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We present a detailed time-domain analysis of a promising nonlinear optical device consisting of alternating
layers of nonlinear materials with oppositely signed Kerr coefficients. We study propagation of nonsolitonic
(Gaussian) pulses through the device, whose transmittance characteristics point to potential uses in all-optical
switches and limiters. If the optical structure has no linear built-in grating, the pulse experiences a nonsoli-
tonic (amplitude-decaying) propagation in the structure, which exhibits limiting properties depending on the
bandwidth of the pulse. We elucidate the conditions under which double imaging occurs within the dynami-
cally formed grating under the pulse propagation. In the presence of the linear out-of-phase grating, we ob-
serve strong envelope compression and reshaping of a Gaussian pulse, resulting in stable high-amplitude,
multiple-peak oscillations as it propagates through the nonlinear optical structure. © 2003 Optical Society of
America

OCIS codes: 230.4320, 190.4360, 230.1480, 190.5530, 200.4740, 230.1150, 190.7110, 200.4740.

1. INTRODUCTION
Today’s fiber-optic networks are constrained by the infor-
mation processing rate of electronics. Efficient optical
signal processing devices with picosecond response times
would help alleviate this bottleneck. Nonlinear periodic
structures represent one class of devices that enable all-
optical signal processing.1–8 These structures have been
theoretically predicted and experimentally demonstrated
to give rise to all-optical switching,3,6,9 pulse
compression,4,5 limiting,7,8,10–13 and logic operations.3,8

Recent studies of pulse propagation in nonlinear Bragg
gratings have concentrated on Bragg solitons, which arise
from the balancing of dispersion of the grating and self-
phase modulation due to Kerr nonlinearity. Nonlinear
coupled-mode equations predict Bragg solitons, solitary
waves that propagate through a grating without changing
their shapes. Gap solitons represent the most-studied
class of Bragg solitons, with pulse spectra lying entirely
within a photonic bandgap.1,2 The term gap soliton was
first introduced in 1987 by Chen and Mills14; then Mills
and Trullinger15 proved the existence of gap solitons by
analytic methods. Later Sipe and Winful16 and de Sterke
and Sipe17 showed that the electric field satisfies a non-
linear Schrödinger equation that allows soliton solutions
with carrier frequencies close to the edge of the stop band.
Christodoulides and Joseph18 and Aceves and Wabnitz19

obtained soliton solutions with carrier frequencies close to
the Bragg resonance.

Experimental demonstrations of gap solitons have been
on soliton propagation, switching, and pulse compression.

Sankey et al.6 reported the first observation of all-optical
switching in a nonlinear periodic structure—a corrugated
silicon-on-insulator waveguide. Soon after, Herbert
et al.7 observed optical power limiting and switching in a
three-dimensional colloidal microsphere immersed in a
Kerr medium. In 1996 Eggleton et al.2 reported direct
observation of soliton propagation and pulse compression
in uniform fiber gratings, verifying experimentally for the
first time the theories put forth by Christodoulides and
Joseph18 and Aceves and Wabnitz.19 Pulse compression
was also later observed in nonuniform Bragg gratings by
Broderick et al.5 Optical pulse compression is attributed
to two mechanisms: optical pushbroom and cross-phase
modulation. The optical pushbroom effect requires a
strong optical pump to alter the local refractive index and
thus detune a weak probe pulse from the center of the
bandgap, modifying the transmission of the probe.4 The
pump-induced nonlinear index change creates a fre-
quency shift at the trailing edge of the probe pulse. The
consequent velocity increase of the trailing edge sweeps
the probe energy to the front of the probe pulse, resulting
in pulse compression. In contrast, the cross-phase modu-
lation effect works in reflection instead of transmission.5

This approach facilitates easier observation of the com-
pressed signal since the probe is spatially separated from
the pump.

Other than gap-soliton propagation, nonsolitonic pulse
propagation has also attracted considerable attention.
Instead of maintaining constant pulse shape as with gap
solitons, propagation of ultrashort, nonsolitonic pulses in
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a device with alternating layers of oppositely signed Kerr
materials involves variations in pulse amplitude and
shape. When a pulse is launched at the front end of such
structure as an incident (forward) wave, the reflected
(backward) wave is zero identically. Once the pulse
moves through the device, the backward-propagating
wave is generated by means of Bragg resonance coupling.
Since the reflected wave is always zero at the front of the
pulse propagation, the pulse in the incident wave does not
trap gap solitons, and so displays nonsolitonlike behavior.
Nevertheless we show that pulse propagation behavior
depends on the system through which the pulse travels.
If the system supports gap-soliton propagation, a nonsoli-
tonic pulse experiences strong compression and pulse re-
shaping, resulting in high-amplitude-multiple-peak oscil-
lations. If the system does not allow the existence of gap
solitons, the amplitude of the pulse decays as it propa-
gates because of reflection into the backward wave.

Gap solitons are certainly of great interest for applica-
tions in telecommunications. But the strict require-
ments of peak power, pulse shape, and duration in pro-
ducing a soliton to perfectly balance dispersion and
nonlinear effect are sometimes hard to satisfy. In con-
trast nonsolitonic pulses have much more flexibility and
the nonsolitonic character allows for self-processing, self-
reshaping, and analog functions such as limiting.

We present in this paper the propagation dynamics of
nonsolitonic pulses in an optical device with alternating
layers of nonlinear materials with oppositely signed Kerr
coefficients. The coupled-mode system was derived and
evaluated in the steady-state analysis (continuous-wave
case) by Pelinovsky et al.10 Optical limiting behavior
that allows transmission of only low-intensity radiation
was considered in their analysis, with applications in op-
tical switches and hardlimiters. The all-optical limiting
was shown to be stable, even under small time-dependent
perturbations developed in the nonlinear periodic
structure.10 A numerical method based on finite differ-
ences was developed by Pelinovsky et al.11 for which
stable transmission of continuous waves was observed in
devices with oppositely-signed Kerr coefficients. Re-
cently we have performed time-domain simulations of ul-
trashort pulse propagation in devices with no linear
built-in grating.12 In the current study, we explore the
influence of device length and strength of the linear grat-
ing on the behavior of pulse propagation. We also show
the limiting behavior of the pulse energy transmittance
as a function of the pulse bandwidth, as well as the double
imaging of pulses inside the grating. Pulse limiting, re-
shaping, and compression are observed and studied.

The paper is organized as follows. In Section 2 we de-
scribe the coupled-mode equations for nonlinear periodic
structures, identify the boundary conditions, define the
incident pulse as a Gaussian pulse, and state the balance
equations. In Section 3 we derive the exact solutions for
gap solitons in the coupled-mode equations and illustrate
the nonsolitonic propagation of the Gaussian pulse in the
nonlinear periodic structure. In Section 4 we define and
justify the material parameters chosen for the numerical
simulations. In Section 5 we present analysis of the
simulation results and discuss mechanisms behind the
observations. Section 6 concludes the paper.

2. MODEL
We adopt coupled-mode equations that describe the reso-
nant Bragg interaction between two counterpropagating
waves in the nonlinear periodic structure10:

iS ]A1

]Z
1

]A1

]T D 1 n0kA2 1 nnl~ uA1u2 1 2uA2u2!A1

1 n2k@~2uA1u2 1 uA2u2!A2 1 A1
2 Ā2# 5 0, (1)

2iS ]A2

]Z
2

]A2

]T D 1 n0kA1 1 nnl~2uA1u2 1 uA2u2!A2

1 n2k@~ uA1u2 1 2uA2u2!A1 1 A2
2 Ā1# 5 0. (2)

A1 and A2 are slowly varying envelope amplitudes of the
right-propagating and left-propagating waves, respec-
tively. Parameters nln , n0k , nnl , and n2k are related to
the linear refractive index and Kerr coefficients of the two
optical materials that make up the nonlinear periodic
grating as follows10:

nln 5
n01 1 n02

2
, nnl 5

nnl1 1 nnl2

2
,

n0k 5
n01 2 n02

p
, n2k 5

nnl1 2 nnl2

p
. (3)

The spatial coordinate Z and the evolution time T are nor-
malized as follows: Z 5 v0z/c and T 5 v0t/unlnu, where
v0 is the frequency of the Bragg resonance, z and t are
physical space and time variables, and c is the speed of
light. The period L of the nonlinear grating is included
in the resonant frequency v0 5 pc/(unlnuL) such that it
no longer appears explicitly in the coupled-mode system
(1)–(2). The total length of the structure in normalized
units is L and the ends of the structure are located at Z
5 0 and Z 5 L.

Let us consider the nonlinear periodic structure that is
built from two optical materials with alternating
oppositely-signed Kerr coefficients when nnl1 5 2nnl2
and nnl 5 0. Under these conditions, the device operates
in a true-optical limiting regime for transmission of light
waves of constant intensity.10 In this regime, the pulse
transmission is stable even with time-dependent
perturbations.12

We assume that a pulse is launched into the structure
from the left end:

I in~T ! 5 uA1~Z 5 0, T !u2, Iref~T ! 5 uA2~Z 5 0, T !u2,

Iout~T ! 5 uA1~Z 5 L, T !u2, uA2~Z 5 L, T !u2 5 0.
(4)

Iref(T) is the reflected intensity at the input end of the
grating (left end) and Iout(T) is the transmitted intensity
at the output end of the grating (right end). The incident
intensity I in(T) is defined by the optical signal launched
at the grating, while the reflected and transmitted inten-
sities Iref(T) and Iout(T) are generated dynamically in the
time-dependent solutions of the coupled-mode system (1)–
(2). The boundary conditions defined in Eq. (4) are sat-
isfied at all times. In addition we assume zero initial
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conditions: A6(Z, T 5 0) 5 0. We consider that a
Gaussian pulse is launched onto the system:

I in~T ! 5 Ipeak expF2
~T 2 m!2

2s 2 G , (5)

where Ipeak is the maximal intensity of the pulse, m is the
time delay of the pulse, and s defines the pulse duration
as the full width at half maximum, or FWHM:

FWHM 5 2s~2 ln 2 !1/2. (6)

If m @ FWHM, the pulse intensities approach zero at T
5 0 and we neglect the small mismatch between the
pulse intensity I in(0) and the zero initial condition at T
5 0.

The coupled-mode system (1)–(2) obeys the balance
equation

]

]T
~ uA1u2 1 uA2u2! 1

]

]Z
~ uA1u2 2 uA2u2! 5 0. (7)

Integrating over the nonlinear structure, we find a bal-
ance between the incident, reflected, and transmitted in-
tensities:

d

dT
E

0

L

~ uA1u2 1 uA2u2!dZ 5 I in~T ! 2 Iref~T ! 2 Iout~T !.

If the incident pulse is fully transmitted and no light be-
comes trapped within the grating in the limit T → `, the
conservation of total power takes place in the form

Iin 5 Iref 1 Iout , (8)

where I denotes the total incident, reflected, or transmit-
ted intensity, e.g., Iin 5 *2`

` I in(T)dT. The balance be-
tween the total intensities enables us to compute the
input–output transmission characteristic for propagation
of the Gaussian pulse [Eq. (5)], i.e., Iout /Iin .

3. BEHAVIOR OF SOLITONIC AND
NONSOLITONIC PULSES
Since the propagation behavior of nonsolitonic pulses de-
pends on whether the system is soliton supportive, we be-
gin by deriving the exact solutions of the coupled-mode
system (1)–(2) for gap solitons. We show that the gap
solitons exist in the system for nnl 5 0, n0k , 0, and
n2k . 0, or alternatively for nnl 5 0, n0k . 0, and n2k
, 0. The parameter n2k can be normalized to be posi-
tive without loss of generality. Then we show that the
gap soliton propagates with a constant speed even if the
nonlinear periodic structure is long, i.e., in the limit of
large L. On the other hand, the nonsolitonic pulse [Eq.
(5)] either decays or oscillates in amplitude in long peri-
odic structures. In other words, propagation of Gaussian
pulses is intrinsically nonsolitonic.

In order to find exact solutions for gap solitons we re-
write the coupled-mode system (1)–(2) in new coordinates
as

z 5
Z 2 VT

~1 2 V2!1/2 , t 5
T 2 VZ

~1 2 V2!1/2 ,

A6~Z, T ! 5 ~1 6 V !1/2a6~z, t!, (9)

in which the system with nnl 5 0 takes the form

iS ]a1

]z
1

]a1

]t
D 1 n0ka2 1 n2k@~2~1 1 V !ua1u2

1 ~1 2 V !ua2u2)a2 1 ~1 1 V !a1
2 ā2] 5 0, (10)

2iS ]a2

]z
2

]a2

]t
D 1 n0ka1 1 n2k@~~1 1 V !ua1u2

1 2~1 2 V !ua2u2)a1 1 ~1 2 V !a2
2 ā1] 5 0, (11)

Gap solitons are stationary solutions of the coupled-mode
system (1)–(2) that move with constant velocity V and
have constant detuning frequency V. Separating vari-
ables in the system (10)–(11), we write these stationary
solutions in the form

a1 5 @Q~z!#1/2 exp$i@ f~z! 2 c ~z!# 1 iVt%,

a2 5 @Q~z!#1/2 exp@if~z! 1 iVt# . (12)

The function Q(z) in Eq. (12) is the intensity of the right-
propagating and left-propagating waves, i.e., Q(z)
5 ua1u2(z) 5 ua2u2(z), where we use the balance Eq. (7)
for a6(z, t) with zero boundary conditions in z. The
functions @ f(z) 2 c (z)# and f(z) in Eq. (12) are the com-
plex phases of the waves, given that c (z) represents the
phase difference between the complex phases. It follows
from Eqs. (10), (11), and (12) that the functions Q(z) and
c (z) satisfy the system of differential equations

]Q

]z
5

]H

]c
5 22Q sin c ~n0k 1 2n2kQ !, (13)

]c

]z
5 2

]H

]Q
5 2V 2 2 cos c ~n0k 1 4n2kQ !,

(14)

where the H 5 H(Q, c) is a conserved quantity given by

H 5 2Q~n0k 1 2n2kQ !cos c 2 2VQ. (15)

We note that solutions of the system (13)–(14) do not de-
pend on the velocity V. The gap soliton solution satisfies
the zero boundary conditions at infinity: Q(z) → 0 as
uzu → `. Such solutions occur for H 5 0, when cos c can
be eliminated from Eq. (15):

cos c 5
V

n0k 1 2n2kQ
. (16)

The closed-form solution of the system (13)–(14) can then
be written as

S ]Q

]z
D 2

1 U~Q ! 5 0,

U~Q ! 5 24Q2@~n0k 1 2n2kQ !2 2 V2#.
(17)

The system of Eqs. (17) describes the zero energy level of
a particle moving in a potential field U(Q). The critical
point Q 5 0 is a saddle point if U9(0) , 0, which neces-
sitates uVu , un0ku. Under this constraint, the trajectory
of the solution Q 5 Q(z) starts from Q 5 0 in the limit
z 5 2`, grows exponentially until the turning point Q
5 Qsol , where U(Qsol) 5 0, and then decays exponen-
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tially to Q 5 0 in the limit z → 1`. If n2k . 0 and
n0k , 0, the turning point exists at

Qsol 5
un0ku 2 uVu

2n2k
.

The analytical expression for the gap soliton can be de-
rived from Eqs. (17) and is found to take the form

Q~z! 5
n0k

2 2 V2

2n2k~ uVucosh gz 1 un0ku!
, (18)

where g 5 2(n0k
2 2 V2)1/2. The gap soliton is centered

at z 5 0, where Q(0) 5 Qsol and is exponentially local-
ized such that Q(z) → Q` exp(2guzu) as uzu → `.

The gap soliton solution [Eq. (18)] exists for n2k . 0,
n0k , 0, and 0 Þ uVu , un0ku, i.e., when the nonlinear
grating has an out-of-phase, built-in modulation of the
linear refractive index. We use the out-of-phase gratings
to refer to the case when the material with the lower lin-
ear index has a positive Kerr coefficient and the material
with the higher linear index has a negative Kerr coeffi-
cient.

We have simulated propagation of a gap soliton in the
coupled-mode system (1)–(2) with nnl 5 0, n2k 5 1/2p
3 10212 cm2/W, and n0k 5 20.1. Parameters of the gap
solitons are V 5 0.5 and V 5 0.01. Propagation of the
gap soliton is shown in Fig. 1(a) and 1(b). They show the
intensities of the forward and backward waves uA6u2.
Being injected into the grating initially, the gap soliton
propagates with a constant speed V and a constant detun-
ing frequency V from the center of the stop-band fre-

quency v0 . The envelope amplitudes of both the
forward- and backward-propagating waves remain con-
stant spatially. The steady propagation of gap solitons
can be observed in devices of large L.

For comparison, we have also simulated propagation of
a Gaussian pulse [Eq. (5)] in the coupled-mode system
(1)–(2) with pulse specifications similar to the soliton case
(Ipeak 5 55 GW/cm2 and FWHM 5 27 fs) and with nnl
5 0 and n2k 5 1/2p 3 10212 cm2/W. We observe two
characteristic scenarios of Gaussian pulse propagation,
depending on the parameter n0k . If n0k 5 0, the pulse
amplitude decays with longer propagation distance and
the pulse width grows. This scenario is shown in Fig. 2.
If n0k 5 20.1, the pulse amplitude experiences strong
compression, pulse reshaping, and high-amplitude
multiple-peak oscillations. This scenario is shown in Fig.
3. Pulse compression–decompression cycling is observed
in the system (1)–(2) in the case when n0k , 0, and pulse
amplitude decay is observed when n0k > 0. Gap soliton
propagation is possible in the former case, but is not al-
lowed in the latter case.

In the rest of this section, we prove analytically that
pulse compression can be experienced with an out-of-
phase, built-in linear grating, assuming the incident
pulse takes the form of [Eq. (5)]. For nnl 5 0, zero initial
conditions, and a real boundary value of A1(0, T)
5 @I in(T)#1/2, the coupled-mode system (1)–(2) can be
simplified to

A1 5 u~Z, T !, A2 5 iy~Z, T !,

where u and y are real variables satisfying the system

Fig. 1. Bragg soliton propagation in the system (1)–(2) with
nnl 5 0, n0k 5 20.1, n2k 5 1/2p 3 10212 cm2/W. Shown are
(a) intensity of the forward wave and (b) intensity of the back-
ward wave. Parameters of the Bragg soliton are V 5 0.5, V
5 0.01.

Fig. 2. Decaying Gaussian pulse propagation in the system (1)–
(2) without built-in linear grating: nnl 5 0, n0k 5 0, n2k
5 1/2p 3 10212 cm2/W. Shown are (a) intensity of the forward
wave and (b) intensity of the backward wave. Parameters of the
Gaussian pulse are Ipeak 5 55 GW/cm2, FWHM 5 27 fs.
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]u

]Z
1

]u

]T
5 2@n0k 1 n2k~u2 1 y2!# y, (19)

]y

]Z
2

]y

]T
5 2@n0k 1 n2k~u2 1 y2!#u.

(20)

It follows from Eq. (20) with n0k , 0 that the time deriva-
tive ]y/]T is negative for y ' 0 and 0 , u(T) , (Icl)

1/2.
Here Icl 5 un0ku/n2k is the closing intensity. Therefore
when the Gaussian pulse [Eq. (5)] enters the device at the
input Z 5 0, the generated backward wave field y is al-
ways negative. The other Eq. (19) defines the rate of
change of the pulse amplitude in the reference frame
moving to the right with unit speed (the speed of the
Gaussian pulse). At the peak of the Gaussian pulse, the
rate of change is positive if y , 0 and Ipeak . Icl . There-
fore the Gaussian pulse with the peak intensity Ipeak ex-
ceeding the closing intensity Icl is compressed in width
and increased in peak amplitude by the out-of-phase,
built-in linear grating. On the other hand, similar analy-
sis shows that the Gaussian pulse with Ipeak , Icl , or the
Gaussian pulse in the in-phase, built-in linear gratings
with n0k > 0, is decompressed in width and decreased in
amplitude during propagation in the nonlinear periodic
structure.

To summarize, when a gap soliton [Eq. (12)] is launched
at the input of the optical device, it propagates through-
out the periodic structures as a uniformly shaped soliton

pulse in both coupled counterpropagating waves. When
a Gaussian pulse [Eq. (5)] is launched at the input of the
optical device, it propagates as a forward wave, generates
a reflected backward wave, and displays nonsoliton be-
havior: Pulse amplitude decays or pulse compresses, re-
shapes, and oscillates.

4. MATERIAL PARAMETERS
Here we discuss the physical approximations behind the
derivation of the coupled-mode system (1)–(2). We also
describe the choice of material parameters n0k and n2k in
numerical modeling of the system, based on device appli-
cations.

In the derivation of the coupled-mode system (1)–(2),
we have assumed that the response time of the optical
material is much smaller than the duration of the pulse
envelope. In the present work, we typically assume a
maximum index change of 0.01. Experimentally, refrac-
tive index changes as large as 0.1 have been obtained.
Ultrafast index changes have been reported in systems
such as polymers doped with azobenzenes, low-
temperature-grown GaAs, or helium-plasma-assisted
molecular-beam-epitaxy InGaAsP.20–23 The response
time of the materials was reported to be as fast as 2
ps.21,22

In deriving the system (1)–(2), we have also neglected
the effects of absorption. In reality, materials which ex-
hibit ultrafast index changes as large as 0.1 have signifi-

Fig. 3. Propagation of a launched Gaussian pulse in the system with out-of-phase, built-in linear grating n0k 5 20.1; compression–
decompression cycling is observed. The other parameters are the same as in Fig. 2. Shown are (a) intensity of the forward wave; (b)
intensity of the backward wave; (c) top view of the three-dimensional graph of panel (a); (d) top view of the graph of panel (b).
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such highly nonlinear materials would need to be at least
2 mm thick to give rise to the class of transfer functions
considered herein. Over such length a device would lose
up to 50% of the transmitted power as a result of absorp-

tion. This effect would limit the performance of the opti-
cal device. It was previously shown that the omission of
some nonlinear effects (such as saturation of nonlinear-
ity) can lead to incorrect prediction of very-high-intensity
behavior.24 Since in the analysis reported herein, we do
not include the absorption and saturation effects, exact
results of some computations, such as closing intensity,
constant transmittance occurring at high incident inten-
sity, or degree of pulse compression could be significantly
altered. However the qualitative behavior of the most
important trends (e.g., transfer function shape) should be
correct.9 We also note that index changes of 0.01 can be
obtained at spectral points at which the absorption and
saturation effects are lower by orders of magnitude.25

Throughout the simulations the Kerr coefficients nnl1,2
of the two adjacent layers are nnl1 5 2nnl2 5 2.5
3 10212 cm2/W, and the average linear index is fixed at
nln 5 1.50. The center frequency of the incident pulse is
fixed at f0 5 2 3 1014 Hz (or at wavelength l0
5 1.50 mm). This choice gives the values nnl 5 0 and
n2k 5 1/2p 3 10212 cm2/W in the coupled-mode system
(1)–(2).

We analyze propagation of a Gaussian pulse [Eq. (5)]
through the periodic optical device for three different
cases (as shown in Fig. 4): (A) no linear built-in grating,
n0k 5 0, (B) in-phase, built-in grating, n0k . 0, and (C)
out-of-phase grating, n0k , 0.

5. NUMERICAL SIMULATIONS OF
GAUSSIAN PULSE PROPAGATION
A. Case I: n0kÄ0
The steady state behavior of this device in Fig. 5 shows
the energy transmittance as a function of incident pulse
intensity. The energy transmittance is defined as the ra-
tio of total pulse transmitted intensity Iout to the total
pulse incident intensity Iin , where the total intensities
are defined in Eq. (8). The inset of Fig. 5 illustrates the
limiting behavior, in which the intensity of the transmit-

Fig. 4. Nonlinear periodic device consists of alternating layers
of nonlinear materials with oppositely-signed Kerr coefficients.
The refractive indices of two adjacent layers are n01 1 nnl1I and
n02 1 nnl2I. We study three cases: (a) no linear grating; (b) in-
phase, linear, built-in grating; (c) out-of-phase, linear, built-in
grating.

Fig. 5. Steady state analysis: transmittance as a function of
incident intensity level for various device lengths: L 5 70 mm,
180 mm and 290 mm. Inset: transmitted intensity level versus
incident intensity for the same device, demonstrating character-
istic limiting behavior.
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ted light is clamped and approaches asymptotically the
limiting intensity for increasing incident intensity.

The energy transmittance of the pulses is shown as a
function of pulse width in Fig. 6. In these numerical
computations, the incident pulse takes the form of Eq. (5)
with a peak pulse intensity chosen to be Ipeak
5 4 GW/cm2, such that the maximum magnitude of
change in the refractive index is 0.01. The graph shows
that the limiting behavior of the pulse transmission de-
pends on its bandwidth (see also in Ye et al.12). The long-

duration pulses in Fig. 6 exhibit the desired limiting be-
havior because their spectral bandwidth lies entirely
inside the stop band of the grating, leading to bandwidth-
independent transmittance. Short-duration pulses, on
the other hand, have a spectral bandwidth which exceeds
the width of the dynamic stop band, resulting in trans-
mission of the portion of the power which lies outside the
stop band of the device. The knee in the characteristic of
Fig. 6 occurs when the pulse bandwidth and nonlinear fil-
ter bandwidth become comparable:

vfilter 5
4~nnl1 2 nnl2!Ipeak

p~n01 2 n02!
v0 . (21)

In Fig. 6 the transmittance decreases from 0.75 to 0.25
when the device length is increased from 70 mm to 290
mm, because stationary gap solitons are not transmitted
through the periodic structure with constant linear re-
fractive index. The pulse intensity decays along the de-
vice length during the pulse transmission.

Because the Gaussian pulse propagation has a nonsoli-
ton character, the pulse amplitude decays as it propagates
in the nonlinear structure. Not only is the amplitude af-
fected, but the shape of Gaussian pulses is also strongly
distorted, depending on the size of the structure and ini-

Fig. 6. Pulse transmittance as a function of pulse width for a
fixed peak pulse intensity of Ipeak 5 4 GW/cm2. The transmit-
tance of the device with length L 5 70 mm, 180 mm, and 290 mm
drops to a limiting value.

Fig. 7. Input and output intensities of pulse through a 180-mm-
long device for an input pulse width of (a) 605 fs or characteristic
length of 180 mm, and (b) 1440 fs or characteristic length of 435
mm.

Fig. 8. Heuristic analysis of pulse shaping in a 180-mm-long
nonlinear grating. The time-dependent, instantaneous trans-
mittance is attributable to contributions from the forward- and
backward-propagating pulse for an input pulse width of (a) 605 fs
or characteristic length of 180 mm, and (b) 1440 fs or character-
istic length of 435 mm.
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tial pulse width. We show in Fig. 7(a) and 7(b) the trans-
mitted pulse shapes through a 180-mm-long device for two
different temporal widths.

The bandwidth of both pulses is much less than the ef-
fective bandwidth of the device, allowing us to focus at-
tention on intensity self-patterning of the pulses by re-
moving the effects of incomplete spectral blocking. To
explain the distortion in transmitted pulses, we calculate
the time-dependent transmittance of the induced nonlin-
ear grating, as illustrated in Fig. 8(a) and 8(b). For the
shorter pulse length of 180 mm, Fig. 8(a) shows that the
forward- and backward-propagating waves form their
strongest instantaneous gratings at different times. The
backward-propagating wave gives rise to an additional
delayed replica of the transmitted pulse in the time-
dependent transmittance, causing a dip in the transmit-
ted pulse of Fig. 7(a). When the incident pulse is longer
than the device (435 mm in this example), the strongest
instantaneous gratings are formed roughly at the same
time period for forward- and backward-propagating
waves [Fig. 8(b)]. Sequential multiple reflections of
pulses inside the relatively short structure create echoed
patterning of the transmitted pulse, as seen in Fig. 7(b).

B. Case II: n0kÌ0
We now consider periodic structures with an in-phase, lin-
ear, built-in grating, with n0k . 0 and n2k . 0. The
intensity-induced nonlinear grating adds constructively
to the existing built-in linear grating, resulting in low
transmittance. No significant transmitted pulse energy
is observed for a large range of different input pulses, be-
cause most of the incident light is blocked by the linear
built-in grating. This is evident in the bottom curve of
Fig. 9(a), constructed for the in-phase linear grating with
n0k 5 0.01.

C. Case III: n0kË0
Here we consider periodic structures with an out-of-
phase, linear, built-in grating, with n0k , 0 and n2k. 0.
Such a grating allows for a dynamic balance to the
intensity-induced nonlinear grating as the pulse propa-
gates through the structure. In other words, the grating
is gradually bleached then regained as the incident pulse
propagates through the structure.

We first investigate the effects of grating strength on
the transmittance of the device. In this analysis, a fixed
incident pulse width of 605 fs is launched at structures
with linear out-of-phase gratings of n0k 5 20.002, n0k
5 20.005, and n0k 5 20.01. The intensity Icl
5 un0ku/n2k that causes the nonlinear index change to
balance completely with the out-of-phase linear grating is
referred to as the closing intensity, as noted in Section 3.
When the balance between linear and nonlinear grating
closes the overall grating profile, the device is locally
transparent. The total pulse transmitted intensity ver-
sus the total pulse incident intensity is shown in Fig. 9(a)
for the out-of-phase linear gratings listed above. The
pulse energy transmittance is shown in Fig. 9(b) for the
same out-of-phase linear gratings.

When the out-of-phase linear grating is large enough to
effect a significant built-in reflectance for the device (for
example, when the built-in linear index difference is
0.01), the transmittance reveals an interplay between
built-in and intensity-dependent grating behavior. At
small incident pulse intensities the linear built-in grating

Fig. 9. (a) Total pulse transmitted intensity versus total pulse
incident intensity; (b) corresponding energy transmittance as a
function of pulse energy incident for linear in- and out-of-phase
built-in gratings. Pulse width of 605 fs and device length of 180
mm were fixed for all cases.

Fig. 10. Output temporal response of the device with length L
5 70 mm, 180 mm, 290 mm, 360 mm, 720 mm, and 1080 mm for a
fixed input pulse with Ipeak 5 4 GW/cm2 and FWHM 5 605 fs.
Pulse compression, reshaping, and double-peak oscillations are
observed.
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blocks most of the light, resulting in a transmittance close
to 0. The transmittance gradually increases as the in-
creasing intensity-induced nonlinear index change offsets
the linear grating. The closing and the reopening of the
grating are responsible for the S-curve character of the
transfer function in Fig. 9(a) which may be used for opti-
cal logic gates such as an OR gate.8,13 The energy trans-
mittance is at its maximum when the peak intensity of
the incident pulse is at the closing intensity and the re-
gions around the peak of the pulse bleach out the grating.

Long-duration pulses exhibit the limiting trend of Fig.
9(b). However the energy transmittance of small linear,
built-in gratings does not converge to the transmittance
of gratings without a linear index change: The more in-
tense are the input pulses, the more there exist regions
where the self-induced nonlinear grating matches with
the built-in linear grating, and the transmittance is
higher than that with no linear grating.

We proceed to examine the influence of device length on
transmitted pulse shapes in the presence of the out-of-
phase linear grating with n0k 5 20.01. We fix the peak
intensity of the incident pulse at a value of Ipeak
5 4 GW/cm2 to close the grating and the pulse width at
FWHM 5 605 fs. All stages of the pulse compression,
reshaping, and high-amplitude, multiple-peak oscilla-
tions are shown in Fig. 10 for different device lengths.
This process resembles the Gaussian pulse propagation in

the out-of-phase linear gratings displayed in Fig. 3. Fig-
ure 3 and Fig. 10 differ only in the parameters used for
the incident pulse. For smaller peak intensity Ipeak and
larger pulse width FWHM, the pulse reshaping and
multiple-peak oscillations in Fig. 10 occur at distances L
. 300 mm, much larger compared with those in Fig. 3.
The initial stage of pulse compression occurs at distances
L , 300 mm, when the compressing Gaussian pulse pre-
serves a single-peak structure.

To validate and explain the observation of pulse com-
pression, we seek to reveal the development of the pulse,
and consequently the instantaneous grating, in time and
space across the device. We show in Fig. 11(a) and 11(b)
the rate of change of the amplitude of the forward-
propagating wave (]A1 /]T 1 ]A1 /]Z) in a 180-mm-long
device. As follows from Eq. (19), the forward-
propagating wave is enhanced when the backward-
propagating wave is coupled in. Moreover the rate of
change of amplitude A1(Z, T) resembles the profile of the
backward-propagating envelope A2(Z, T). The
M-shaped graph along the time axis in Fig. 11(a) de-
scribes the existence of a pulse propagating along the de-
vice length.

Figure 11(b) provides physical evidence of pulse com-
pression. In Fig. 11(c) we compare a Gaussian pulse to a
compressed pulse. The slope of the amplitude of the en-
velope decreases at the beginning stage of the focusing

Fig. 11. (a) Rate of change in amplitude of the forward-propagating wave; (b) top view of (a); (c) a simplified two-dimensional diagram
of a Gaussian incident pulse and a compressed pulse; (d) top view of the intensity profile with respect to time and space. An incident
pulse with Ipeak 5 4 GW/cm2, FWHM 5 605 fs is launched at the input of a 180-mm-long device.
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process. The slope then increases drastically before
reaching the peak. Similar arguments apply to the sec-
ond half of the compressed pulse, except the slope de-
creases after the peak and increases at the final stages of
the focusing process. The convergence of the four slopes
of the M-shape along the device length in Fig. 11(b) dem-
onstrates the changes in slopes associated with compres-
sion.

As the pulse propagates through the structure, the
intensity-induced nonlinear grating gradually closes the
total grating. The sum of forward- and backward-
propagating intensities can give rise to an instantaneous
peak intensity which exceeds that required to close the
grating completely at some time instances. For a short
period of time the nonlinear grating dominates the index
grating, which creates a slight in-phase total grating
(positive values). Figure 11(d) depicts this process in a
500-layer (180-mm-long) device. The front of the pulse
travels approximately at the same speed as the peak of
the pulse. The trailing edge, however, catches up with
the leading edge, resulting in pulse compression. The ef-
fect brings to mind a pushbroom, as described by Broder-
ick et al.4,5 Instead of using both pump signal and probe

beam, we use only one strong pulse to alter the local re-
fractive index of the medium, resulting in a self-
pushbroom.

The compression effects are observed when the peak
pulse intensity Ipeak is set to close completely the grating,
i.e., Ipeak 5 Icl 5 un0ku/n2k . If the intensity-induced non-
linear grating is small compared to the out-of-phase lin-
ear grating, the transmittance is expected to be lower due
to reflection by the grating. We simulate a pulse [Eq. (5)]
with peak intensity Ipeak 5 2 GW/cm2 which gives a
maximum nonlinear grating of 0.005 (lower than the out-
of-phase linear grating n0k 5 20.01). Figure 12(a)
shows the low transmittance and decay of the output
pulse. In the case of higher input peak intensity Ipeak ,
the nonlinear grating will dominate the grating profile,
resulting in a sign-switching of the grating profile. Simi-
lar to the case Ipeak 5 4 GW/cm2, the energy of forward-
and backward-propagating waves will be stored inside
the grating, causing pulse compression during transmis-
sion. Figure 12(b) shows the simulated compressed out-
put pulse when the peak incident pulse is Ipeak
5 6 GW/cm2, corresponding to a maximum induced non-
linear grating of 0.015 (higher than the out-of-phase lin-
ear grating n0k 5 20.01).

Summarizing, we observe envelope compression in the
nonlinear optical structures with an out-of-phase, built-in
linear grating when the device length does not exceed
twice the input pulse width and the peak input intensity
matches or exceeds that required to close the grating.

6. CONCLUSION
We have investigated the propagation dynamics of ul-
trashort pulses in a nonlinear periodic structure with
variation of the grating length and linear grating
strength. We have studied the pulse behavior for the no-
built-in grating, in-phase, built-in grating, and out-of-
phase grating cases. In the absence of the linear grating,
the energy transmittance of pulses with small bandwidth
(compared to the bandwidth of the grating) is indepen-
dent of pulse width. In other words, the limiting behav-
ior of the device is pulse-bandwidth-dependent. We have
distinguished the mechanism behind pulse shape forma-
tion for long-duration pulses from that for short-duration
pulses. In the presence of the linear grating, S-shaped
transmittance characteristics have been observed result-
ing from expansion and contraction of the stop band. We
have described a compression effect reminiscent of the
pump-probe pushbroom for a single pulse. The analysis
of the temporal pulse propagation presented in this paper
explores the potential optical signal processing functions
such as limiting, logic gate operation, and pulse reshap-
ing of a novel, nonlinear Bragg structure.

W.N. Ye may be reached by e-mail at winnie.ye
@utoronto.ca.
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