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Abstract. We consider existence and stability of dispersion-managed solitons in the two ap-
proximations of the periodic nonlinear Schrödinger (NLS) equation: (i) a dynamical system for a
Gaussian pulse and (ii) an average integral NLS equation. We apply normal form transformations
for finite-dimensional and infinite-dimensional Hamiltonian systems with periodic coefficients. First-
order corrections to the leading-order averaged Hamiltonian are derived explicitly for both approxi-
mations. Bifurcations of soliton solutions and their stability are studied by analysis of critical points
of the first-order averaged Hamiltonians. The validity of the averaging procedure is verified and the
presence of ground states corresponding to dispersion-managed solitons in the averaged Hamiltonian
is established.
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1. Introduction.

1.1. Motivations. Ultrafast high–bit-rate optical communication networks are
enhanced by the dispersion management technology when two optical fibers of op-
posite dispersion are periodically concatenated into a line [1]. If the communication
network has low path-averaged dispersion and high local dispersion, the data signals
are optimally transmitted from the input to output ends through a periodic sequence
of compression and expansion cycles. The long-haul dispersion management is techno-
logically combined with standard loss management when a periodic chain of amplifiers
compensates distributive fiber losses.

Many recent experimental groups reported revolutionary performance of dispersion-
managed (DM) pulses in optical communication networks [2, 3]. Two regimes were
studied in detail: DM solitons and chirped return-to-zero pulses. DM solitons are time
bits transmitted stationary on the average through the long-haul communication net-
work [2]. The chirped return-to-zero pulses are weakly broadened on the average
due to transmission, and some post-transmission compression may be required at the
output of the network [3].

This paper addresses the stationary DM solitons and resolves yet open problems
of existence and stability of stationary DM solitons described by a periodic nonlinear
Schrödinger (NLS) equation. Theoretical studies of DM solitons are based on one
of the three averaging methods: (i) variational Gaussian approximation, (ii) asymp-
totic reduction to an integral NLS equation, and (iii) numerical split-step averaging
algorithm (see the latest reviews [4, 5, 6]).
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The variational Gaussian approximation truncates the periodic NLS equation at
a finite-dimensional Hamiltonian system with periodic coefficients. The truncation
is performed by integrating the Lagrangian density of the NLS equation over the
Gaussian pulse and varying the resulting function with respect to parameters of the
Gaussian pulse [7, 8]. Periodic orbits of the nonautonomous Hamiltonian system
correspond to stationary DM solitons [9, 10]. In an optimal design of the dispersion
map, the evolution length for dispersion variations is much shorter than the lengths
of average dispersion and fiber nonlinearity. Within this limit, the nonautonomous
Hamiltonian system can be averaged over the map period. The averaging procedure
results, at the leading-order approximation, in a planar dynamical system [11, 12].
Existence and stability of DM solitons can be studied by analyzing trajectories on
a phase plane near the critical points of the Hamiltonian system [13]. One of the
drawbacks of the Gaussian approximation is the lack of information about the error
of the averaging procedure.

The asymptotic reduction to an integral NLS equation is also based on averaging
of the periodic NLS equation over a short period of the dispersion map [14, 15]. The
method is, however, much more general, since the kernel for the averaging transforma-
tion is the most general Fourier solution of the linear periodic Schrödinger equation,
which includes the Gaussian pulse as a particular case. Stationary DM solitons are
approximated by the time pulse solutions of the nonlinear eigenvalue problem asso-
ciated with the integral NLS equation. The DM soliton solutions have constantly
rotating complex phase along the fiber [15, 16]. Only when the integral NLS equation
is approximated at the Gaussian pulse [17], the resulting dynamical system repro-
duces the same planar Hamiltonian system as in [13]. In the asymptotic reduction
method, the integral NLS equation can be viewed as the leading-order term in a set
of canonical transformations applied to the periodic NLS equation [18].

At last, the numerical split-step averaging algorithm is applied to separate the
pulse resolution in time and the almost periodic evolution of the pulse along the fiber
by averaging the output of the split-step method over many time periods [5, 6]. A
single pulse with a preserved value of energy was found to converge to a station-
ary DM soliton unless various resonances and temporal instabilities resulted in an
unpredictable loss of convergence of the numerical algorithm [6, 19].

We are motivated by a number of averaging methods applied to the periodic NLS
equation and by contradictory results on existence and stability of DM solitons found
within these methods. In order to justify and clarify these methods, we develop a
systematic asymptotic procedure for averaging of the periodic NLS equation, based
on normal form transformations. We extend the perturbation expansions to the next
order, where the first-order corrections to the leading-order equations are derived. The
validity of averaging methods and the errors (accuracy) of the leading-order and first-
order approximations are proved rigorously for a two-step dispersion map. Branches of
stationary DM solitons and their stability are analyzed within the averaged equations.

This paper is structured as follows. In section 1.2 we describe the physical model,
parameters, and normalizations. In section 1.3 we discuss two approximations of DM
solitons and summarize the previously known results, together with our main propo-
sitions. In sections 2.1–2.4 we study the Gaussian approximation, in combination
with the leading and first orders of the averaging method. We find explicitly ana-
lytical curves for existence and stability of the DM solitons in this lower-dimensional
approximation. In sections 3.1–3.3 we analyze the full PDE problem and prove con-
vergence of the leading and first orders of the averaging method. The existence of
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ground states is proved in the averaged equation but the analytical curves are im-
plicit in this higher-dimensional approximation. Section 4 describes open problems of
analysis beyond the first-order averaging theory.

1.2. Model and parameterizations. The NLS equation for optical pulses in
dispersion-compensated fibers is

i
∂U

∂Z
− 1

2
β2(Z)

∂2U

∂T 2
+ γ2(Z)|U |2U = 0,(1.1)

where U(Z, T ) is the electric field envelope of the carrier wave at the operating wave-
length λ0, while β2(Z) and γ2(Z) are the fiber dispersion and nonlinearity [1]:

β2 = − λ2
0

2πc
D(Z), γ2 = γ exp

[∫ Z

0

g(Z ′)dZ ′ − αZ

]
, γ =

2πn2

λ0Aeff
(> 0).(1.2)

All units in (1.1)–(1.2) have dimensional form, such that D(Z) is the dispersion coef-
ficient measured in ps/(nm × km), c is the speed of light in km/sec, |u|2 is the light
intensity in mW, n2 is the nonlinear refractive index in (µm)2/mW, Aeff is the effec-
tive fiber area in (µm)2, α is the distributive loss coefficient in km−1, and g(Z) is the
periodic amplification. For example, if Aeff = 50(µm)2, c = 3 105km/sec, λ0 = 1.5µm,
n2 = 2.5 10−11(µm)2/mW, and D = 0.12ps/(nm × km), then β2 ≈ −0.1ps2/km and
γ ≈ 2 10−3(mW × km)−1, which are reasonable values for these coefficients.

The dispersion map D(Z) consists of two piecewise-constant fibers of lengths L1

and L2 in km, such that L1 + L2 = LDM, which have dispersion values D1 and D2.
The total number of fiber segments is NDM. The amplification map g(Z) is periodic
with period LAM, where the ratio LDM/LAM is integer. A typical loss compensation
due to erbium-doped fiber amplifiers is

g = αLAM

NAM∑
n=1

δ(Z − nLAM ),(1.3)

where NAM is the number of amplifiers over the transmission line: Z ∈ [0, NDMLDM]
and the amplifiers compensate the losses exactly. As a result, the fiber nonlinearity
γ2(Z) is a periodic function with period LAM. We will use throughout the paper the
lossless approximation when γ2(Z) = γ is constant. The lossless approximation occurs

in the limit LAM � LDM, when limLAM→0

∫ Z

0
g(Z ′)dZ ′ = αZ. This approximation is

sufficiently accurate for modeling fibers with distributed (e.g., Raman) amplification
or fibers with several amplifiers at the dispersion compensation period LDM [1]. In
other cases, our results are still expected to hold qualitatively.

We can rescale variables (Z, T, U) by introducing characteristic pulse power P0

in mW, characteristic pulse width T0 in ps, and characteristic (nonlinear) length
LNL = (γP0)−1 in km:

Z = LNLz, T = T0t, U =
√

P0u.(1.4)

The periodic NLS equation (1.1) in new variables reduces to the dimensionless form
[1],

i
∂u

∂z
+

m

2ε
d
(z

ε

) ∂2u

∂t2
+

1

2
d0

∂2u

∂t2
+ |u|2u = 0,(1.5)
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with the dimensionless parameters

m =
λ2
0L1L2(D1 − D2)

4πcLDMT 2
0

, d0 =
λ2
0(D1L1 + D2L2)

2πcεT 2
0

, ε = γLDMP0.(1.6)

The normalized periodic function d(ζ) has the unit period for ζ = z/ε and zero

average: d(ζ + 1) = d(ζ) and
∫ 1

0
d(ζ)dζ = 0. It is defined explicitly as

d =
2

l
for ζ ∈ [0, l),

d =
2

l − 1
for ζ ∈ [l, 1),(1.7)

where 0 < l < 1 is the ratio of the first fiber leg to the total map period, i.e.,
l = L1/LDM. We assume that the first leg is for the focusing fiber, i.e., D1 > 0, and
the second leg is for the defocusing fiber, i.e., D2 < 0. As a result, the parameter m
is positive, m > 0. The general problem (1.5) has four parameters:

• m (> 0)—the strength of the local (varying) dispersion,
• d0—the strength of the average dispersion,
• ε (> 0)—the period of the dispersion map,
• l (0 < l < 1)—the relative length of the focusing fiber leg to the total map

period.
Parameters m and ε can be normalized to unity by applying the transformation

to the periodic NLS equation (1.5):

ζ =
z

ε
, τ =

t√
m

, w(ζ, τ) =
√

εu(z, t),(1.8)

where w(ζ, τ) solves the standardized periodic NLS equation:

i
∂w

∂ζ
+

1

2
d (ζ)

∂2w

∂τ2
+

1

2
D0

∂2w

∂τ2
+ |w|2w = 0, D0 =

εd0
m

.(1.9)

Thus, the periodic NLS equation (1.9) depends only on two parameters: l (through
d(ζ)) and D0.

In this paper, we study a formal asymptotic limit ε → 0 of solutions u(z, t) of the
periodic NLS equation in the form (1.5). This asymptotic limit corresponds to the
limit of small solutions w(ζ, τ) (in a L2(R) norm) of the periodic NLS equation in the
form (1.9).

1.3. DM solitons and main results on existence and stability. DM soli-
tons can be defined as special solutions of the periodic NLS equation (1.5) in two
conventional approximations: (i) Gaussian pulse [7, 8] and (ii) an averaged integral
NLS equation [14, 15].

Definition 1.1. A DM soliton is an approximate quasi-periodic solution of the
NLS equation (1.5) in the form of the Gaussian pulse with variable coefficients:

u(z, t) =
√

c exp

(
− t2

2(a + ib)
+ iφ

)
,(1.10)

where a(z + ε) = a(z), b(z + ε) = b(z), φ(z + ε) = φ(z) + εµ, and

c =
ea1/2√

2(a + ib)
, e =

√
2

π

∫ ∞

−∞
|u|2(z, t)dt.(1.11)
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The three varying parameters a(z), b(z), and φ(z) are the pulse width, chirp, and the
gauge rotation phase, respectively. The constant parameters µ and e are the phase
propagation constant and the pulse energy, respectively.

The variational equations are derived by minimizing the Lagrangian density of
the periodic NLS equation (1.5) at the Gaussian pulse (1.10) (see, e.g., [22]). It is
then found that the varying parameters a(z) and b(z) satisfy the nonautonomous
dynamical system:

da

dz
=

ea5/2b

(a2 + b2)3/2
,(1.12)

db

dz
=

m

ε
d
(z

ε

)
+ d0 − ea3/2(a2 − b2)

2(a2 + b2)3/2
.(1.13)

The phase parameter φ(z) is coupled with a(z) and b(z) by the nonhomogeneous
equation:

dφ

dz
=

ea1/2(3a2 + 5b2)

8(a2 + b2)3/2
.(1.14)

The dynamical system (1.12)–(1.13) has been studied numerically under different
parameterizations (see reviews [4, 5, 6]). The system was found to be Hamiltonian [9],
where the phase plane was used for matching trajectories of two autonomous systems
derived for the piecewise-constant function d(z). Existence of periodic solutions of
(1.12)–(1.13) was recently proved by Kunze [10]. The leading-order averaging system
was derived from (1.12)–(1.13) by Turitsyn et al. [11, 12]. A single branch of periodic
solutions of the system was found for d0 ≥ 0, while two branches coexist for dmin <
d0 < 0 at any given e [13].

Definition 1.2. DM soliton is a stationary pulse solution of the averaged integral
NLS equation:

µŴ (ω) = −1

2
d0ω

2Ŵ (ω)(1.15)

+

∫ ∫ ∞

−∞

sin [m(ω − ω1)(ω − ω2)]

m(ω − ω1)(ω − ω2)
Ŵ (ω1)Ŵ (ω2)Ŵ (ω1 + ω2 − ω)dω1dω2,

where Ŵ (ω) ∈ Hs(R) with s ≥ 1 and d0 > 0.
The integral NLS equation (1.15) is derived from the periodic NLS equation (1.5)

in the limit ε → 0 by using the asymptotic averaging method explained in section 3.
The integral NLS equation (1.15) follows from (3.15) for stationary pulse solutions:
V̂ (z, ω) = Ŵ (ω)eiµz, where Ŵ (ω) is real function.

Existence of stationary pulse solutions of (1.15) for d0 > 0 and µ > 0 was proved
by Zharnitsky et al. [18]. Recently Kunze proved existence of ground state solutions
Ŵ (ω) ∈ L2(R) for d0 = 0 and µ > 0 [20], which was a considerably more difficult
problem due to the absence of the gradient term in the Hamiltonian. Numerical
results suggest nonexistence of ground state solutions for d0 < 0 due to resonance of
stationary pulses with linear spectrum of the averaged integral NLS equation [13, 21].
Iterations of a numerical method for finding stationary pulse solutions of (1.15) diverge
for both branches of the Gaussian pulse solutions, which exist for (1.12)–(1.13) with
dmin < d0 < 0 (see details in [21]). No rigorous results on nonexistence of ground
states of (1.15) for d0 < 0 are yet available.
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Definitions 1.1 and 1.2 above are commuting in the sense that (i) the system
(1.12)–(1.13) can be averaged in the limit ε → 0 [13] and (ii) the variational Gaussian
approximation can be applied to the integral NLS equation (1.15) [17]. Both the
reductions result in the same set of equations for an averaged Gaussian pulse. In
order to analyze the parameter dependence of DM solitons, we consider the following
two equivalent parameterizations.

Suppose there exist periodic solutions of (1.12)–(1.13) or stationary pulse solutions
of (1.15). The DM solitons are parameterized as e = fµ(µ; d0, l, m, ε), where e =

fµ(µ) is a continuous (possibly multibranched) function of µ. Indeed, solutions Ŵ (ω)
of (1.15) smoothly depend on parameter µ in the domain of their existence, where
Ŵ (ω) ∈ Hs(R) with s ≥ 1. Then, the function e = fµ(µ) is defined by (1.11) as a
continuous function of µ. If there are several solutions of (1.15) for the same value of
µ, the function e = fµ(µ) has several branches for a fixed value of µ. Alternatively,
solutions (a(z), b(z)) of (1.12)–(1.13) smoothly depend on e in the domain of their
existence. Then, µ is defined by µ = (φ(z + ε) − φ(z))/ε = f−1

µ (e). The function
e = fµ(µ) is invertible for each branch of solution, where f ′

µ(µ) �= 0.
For an alternative parameterization, we define the effective pulse width as

τ2(z) =
2

e

√
2

π

∫ ∞

−∞
t2|u|2(z, t)dt(1.16)

and the minimal pulse width as

τ2min = min
z∈[0,ε]

τ2(z).(1.17)

The DM solitons are parameterized as e = fs(s; d0, l, m, ε), where s = 1/τ2min is the
square inverse of the minimal pulse width. The function e = fs(s) is a continuous
(possibly multibranched) function of s. For each branch of stationary pulse solutions
of (1.15), there exists a continuous map s = hµ(µ) defined by (1.16). Then, the
function e = fs(s) is parameterized by µ. Also, for each branch of periodic solutions
of (1.12)–(1.13), there exists a continuous function s = f−1

s (e) defined by

τ2min = min
z∈[0,ε]

(a2 + b2)

a
= min

z∈[0,ε]
a(z).(1.18)

Here we have used (1.10), (1.11), and (1.17) for the first equality and (1.12) for the
second equality. The function e = fs(s) is inverted for each branch of solution, where
f ′
s(s) �= 0.

Lemma 1.3. DM solitons are parameterized by three parameters: E = εe/
√

m
(energy), M = εµ (propagation constant), and S = ms (map strength).

Proof. The statement is proved by applying transformation (1.8) to the integral
quantities (1.11) and (1.16) and to the phase φ(z) of the Gaussian pulse (1.10).

The DM solitons can be analyzed in the Gaussian approximation for several alter-
native representations in variables E, M , and S: (i) on the plane (D0, E) for different
values of S; (ii) on the plane (S, E) for different values of S0; (iii) on the plane (S, M)
for different values of D0; and (iv) on the plane (M, E) for different values of D0. The
four equivalent representations are shown on Figure 1.1(a)–(d), where we reproduce
our main results on computations of the first-order averaging theory for the Gaussian
approximation. The parameter l is fixed at l = 0.1. The solid curves show the result
of the first-order averaging theory for ε > 0. The dotted curves show the result of the
leading-order averaging theory in the limit ε = 0.
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Fig. 1.1. Parameterizations of DM solitons in the first-order averaging theory for Gaussian
approximation: (a) plane (D0, E) for S = 2.5 and S = 5; (b) plane (S,E) for D0 = 0.015 and
D0 = −0.015; (c) plane (S,M) for D0 = 0.015 and D0 = −0.015; and (d) plane (M,E) for
D0 = 0.015 and D0 = −0.015. The dotted curves display the leading-order averaging theory.

There exists only one branch of periodic solutions of (1.12)–(1.13) for 0 < S ≤
Sthr, where Sthr ≈ 3.32. This branch extends for D0 ≥ 0 (see Figure 1.1(a)). When
S > Sthr, the dependence of E versus D0 becomes two-folded: two branches of periodic
solutions exist for Dmin < D0 < 0 and one branch exists for D0 ≥ 0. When S → ∞,
all branches of periodic solutions diverge to infinitely large values of E (see Figure
1.1(b)).

The role of planes (D0, E), (S, E), and (S, M) is different from that of the plane
(M, E) in the leading-order averaging theory. Indeed, the leading-order averaged sys-
tem (dotted curves on Figures 1.1(a)–(d)) describes only the lower branch of periodic
solutions for D0 < 0 (see Figure 1.1(a)). The functions E = fS(S) and M = hS(S) are
single-branched for any S (see Figures 1.1(b), (c)). However, the function E = fM (M)
has two branches at the leading-order approximation (see Figure 1.1(d)), i.e., two so-
lutions for E correspond to the same value of M , and vice verse.

For D0 ≥ 0, there is only one branch of periodic solutions. This branch is bounded
by the threshold value S < Sthr in the leading-order approximation (see Figures
1.1(a)–(c)), while the function E = fM (M) is unbounded on the plane (M, E) (see
Figure 1.1(d)). Thus, again the planes (D0, E), (S, E), and (S, M) give bad leading-
order approximations of periodic solutions compared to the plane (M, E).

The discrepancy between the four alternative parameterizations of periodic solu-
tions of (1.12)–(1.13) disappears in the first-order averaging approximation, shown on
Figures 1.1(a)–(d) by solid curves. Indeed, all curves are unbounded for D0 ≥ 0 and
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all curves become two-valued functions of S, M , and E for any D0 < 0. The upper
branch of periodic solutions on the planes (D0, E), (S, E), and (S, M) is captured in
the first-order averaging theory (see Figure 1.1(a)–(c)). On the other hand, the single
branch for D0 ≥ 0 and the two branches for D0 < 0 are weakly affected on the plane
(M, E) in the first-order approximation, compared to the leading-order theory (see
Figure 1.1(d)). Thus, the plane (M, E) is the most appropriate tool for analysis of
periodic solutions both in the leading-order and first-order averaging theory.

We can now formulate algebraically the main results of the paper for existence
and stability of DM solitons. The results are written in terms of parameters ε, m, d0,
e, µ, and s, while the transformation to parameters D0, E, M , and S is prescribed by
Lemma 1.3. The results are proved for the Gaussian pulse approximation by explicit
computations (section 2) and for the averaged integral NLS equation by standard
PDE analysis (section 3).

Proposition 1.4. Parameters of DM solitons have the following expansions in
powers of ε:

d0 = em1/2g
(0)
d (my) + εe2(1 − 2l)g

(1)
d (my) + O(ε2),(1.19)

µ =
e

m1/2
g(0)µ (my) + ε

e2

m
(1 − 2l)g(1)µ (my) + O(ε2),(1.20)

s = y + ε
e

m3/2
g(1)s (my, l) + O(ε2),(1.21)

where y is a parameter and the functions g
(0,1)
d , g

(0,1)
µ , and g

(1)
s are continuous for

y > 0.
Proof. Here we prove the result only in the limit ε → 0, when the leading-order

averaging theory results in the integral NLS equation (1.15). The kernel of (1.15)
is independent of l. Consider the scaling transformation Ŵ (ω) = λŴ ′(ω). This
transformation leaves (1.15) invariant if parameters µ, d0, e, s, and m in (1.11),
(1.15), and (1.16) transform as follows:

µ = λ2µ′, d0 = λ2d′
0, e = λ2s′, s = s′, m = m′.(1.22)

It is clear from (1.22) that the ratios d0/e and µ/e are invariant under this transfor-
mation and are, therefore, functions of s and m. The particular form used in (1.19)–

(1.20) has been chosen to match with explicit computations of functions g
(0)
d (my) and

g
(0)
µ (my).

Corollary 1.5. In the limit ε → 0, the functions e = fs(s), µ = hs(s), and
e = fµ(µ) have the form

e =
d0√

mg
(0)
d (ms)

, µ =
d0
m

g
(0)
µ (ms)

g
(0)
d (ms)

,
µ
√

m

e
= g(0)µ (g

(0)
d )−1

(
d0

e
√

m

)
.(1.23)

Corollary 1.6. In the limit ε → 0 and d0 = 0, the function e = fµ(µ) has the
form

e = αµ, α =

√
m

g
(0)
µ (ms∗)

,

where s = s∗ is the root of the equation g
(0)
d (ms∗) = 0.
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Proposition 1.7. In the limit ε → 0 and m → 0, the functions e = fµ(µ) and
s = fµ(µ) have the form

e2 = d0f̂µ(µ), s =
1

d0
ĥµ(µ).(1.24)

Proof. In the limit m → 0, the integral NLS equation (1.15) becomes the Fourier
form of the NLS equation. Consider the scaling transformation for the NLS equation:
Ŵ (ω) = λŴ ′(ω′) and ω = λ−1ω′. This transformation leaves the NLS equation
invariant if parameters µ, d0, e, and s in (1.11), (1.15), and (1.16) transform as
follows:

µ = µ′, d0 = λ2d′
0, e = λe′, s = λ−2s′.(1.25)

It is clear from (1.25) that the quantities e2/d0 and sd0 are invariant under this
transformation and are, therefore, functions of µ.

Proposition 1.8. A single branch of DM solitons exists and is linearly stable
for d0 ≥ 0 in both Gaussian and integral NLS approximations. Two branches of DM
solitons exist for d0 < 0 in the Gaussian approximation. For a fixed µ, the branch
with larger e is linearly unstable and the branch with smaller e is linearly stable.

Linearized stability of DM solitons in the Gaussian approximation (1.12)–(1.13)
was studied by Pelinovsky in the limit ε → 0 [13]. We extend this analysis in the first-
order averaging theory in section 2 of this paper. Zharnitsky et al. [18] proved that the
DM solitons are ground states of the averaged integral NLS equation (1.15) for d0 > 0.
The ground states realize a stable minimum of the Hamiltonian functional. We extend
this result for the first-order averaged Hamiltonian in section 3. Open problems for
nonexistence of ground states for d0 < 0 and nonexistence of quasi-periodic solutions
of the periodic NLS equation (1.5) are discussed in section 4.

2. Variational Gaussian approximation. Here we analyze the dynamical sys-
tem (1.12)–(1.13) derived in the variational Gaussian approximation. We construct
the Hamiltonian structure for the system and develop a systematic averaging proce-
dure based on the theory of canonical transformations in section 2.1. The first-order
corrections to the leading-order averaged theory are computed in section 2.2. Exis-
tence and stability of critical points of the first-order averaged Hamiltonian are studied
in sections 2.3 and 2.4.

The dynamical system (1.12)–(1.13) can be written as a Hamiltonian system in
canonical variables (ξ, η):

ξ = b − md−1

(z

ε

)
, η =

1

a
,(2.1)

where d−1(ζ) is the antiderivative of d(ζ) for ζ = z/ε with unit period and mean zero:

d−1(ζ) =

∫ ζ

0

d(ζ ′)dζ ′ −
∫ 1

0

dζ

∫ ζ

0

d(ζ ′)dζ ′.(2.2)

For the piecewise-constant approximation d(ζ) in (1.7), the mean-zero antiderivative
d−1(ζ) is

d−1 =
2ζ

l
− 1 for ζ ∈ [0, l),

d−1 =
2(ζ − 1)

(l − 1)
− 1 for ζ ∈ [l, 1).(2.3)
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The system (1.12)–(1.13) in canonical variables (ξ, η) has a classical Hamiltonian
structure:

dξ

dz
=

∂H

∂η
,

dη

dz
= −∂H

∂ξ
,(2.4)

where the Hamiltonian H = H(ξ, η, z/ε) is

H = d0η − e

(
η

1 + η2(ξ + md−1(z/ε))2

)1/2

.(2.5)

The decoupled equation (1.14) for the phase parameter φ(z) can be expressed through
H(ξ, η, z/ε) as

dφ

dz
=

1

4

(
d0η + η

∂H

∂η
− 2H

)
.(2.6)

There exists a canonical transformation from the Hamiltonian structure (2.4)–(2.5) to
the one studied in [9]. The canonical transformation (2.1) and the Hamiltonian (2.5)
were first reported by Turitsyn et al. [12]. The Hamiltonian structure (2.4)–(2.5)
is more convenient for developing a systematic averaging procedure based on series
of canonical transformations in powers of ε. We will study solutions of the system
(2.4)–(2.5) in the domain D+:

D+ = {(ξ, η) : ξ ∈ R, η > 0} .(2.7)

Lemma 2.1. Suppose the initial point (ξ0, η0) belongs to D+. Then, a solution
(ξ(z), η(z)) stays in D+ for any finite z: 0 ≤ z ≤ z0 < ∞.

Proof. Integrating (1.12) in the canonical variables (2.1), one can find

1

η1/2
=

1

η
1/2
0

+
e

2

∫ z

0

η(ξ + md−1)dz

(1 + η2(ξ + md−1)2)3/2
.

Since the integrand is never singular, the triangular inequality implies for 0 ≤ z ≤ z0
that ∣∣∣∣ 1

η1/2

∣∣∣∣ ≤ 1

η
1/2
0

+
eM

2
z0,

where

M = max
0≤z≤z0

η|ξ + md−1|
(1 + η2(ξ + md−1)2)3/2

.

Therefore, the point (η, ξ) never crosses the left boundary of D+ at η = 0. Direct
integration of (1.12)–(1.13) with the variables (2.1) and similar estimates of the re-
sulting integrals show that |ξ| and η remain bounded in the domain D+ for any finite
z: 0 ≤ z ≤ z0.

2.1. Averaging of the periodic Hamiltonian system (2.4)–(2.5). The pe-
riodic Hamiltonian system (2.4)–(2.5) is averaged according to the formalism of nor-
mal form transformations [23]. We denote ζ = z/ε such that H = H(ξ, η, ζ). In the
domain D+ defined by (2.7), there exists a near-identity generating function:

F (ξ, y, ζ) = ξy +

N+1∑
n=1

εnFn(ξ, y, ζ) + O(εN+2),(2.8)
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where the correction terms Fn(x, y, ζ) for 1 ≤ n ≤ (N + 1) are periodic mean-zero
functions of ζ:

Fn(x, y, ζ + 1) = Fn(x, y, ζ),

∫ 1

0

Fn(x, y, ζ)dζ = 0.(2.9)

The generating function F (ξ, y, ζ) defines the near-identical canonical transformation

x =
∂F

∂y
(ξ, y, ζ), η =

∂F

∂ξ
(ξ, y, ζ)(2.10)

and takes the Hamiltonian H(ξ, η, ζ) to the form

Hnew(x, y, ζ) = H(ξ(x, y, ζ), η(x, y, ζ), ζ) +
1

ε

∂F

∂ζ
(ξ(x, y, ζ), y, ζ)

= HN (x, y) + O(εN+1),(2.11)

where HN (x, y) is the Nth-order averaged Hamiltonian:

HN (x, y) =

N∑
n=0

εnhn(x, y).(2.12)

When the remainder term of order of O(εN+1) is neglected, the new canonical variables
(x, y) solve the averaged Hamiltonian dynamical system:

dx

dz
=

∂HN

∂y
,

dy

dz
= −∂HN

∂x
.(2.13)

The difference between solutions of the full system (2.4) and the averaged system
(2.13) is controlled with the accuracy of O(εN+1) on the interval 0 ≤ z ≤ z0. Conver-
gence and bounds of the normal-form transformations in Hamiltonian systems with
fast dependence on time was proved by Neishtadt [24].

The canonical transformation (2.10)–(2.11) follows from the invariance of the
Lagrangian of the system (2.4) [23]:

L = η
dξ

dz
− H(ξ, η, ζ) = −x

dy

dz
− Hnew(x, y, ζ) +

dF

dz
(ξ, y, ζ).

In the domain D+, the Hamiltonian H(ξ, η, ζ) is a C∞ function of ξ and η. Then, the
generating functions Fn(ξ, y, ζ) are C∞ functions of ξ and y. Provided the asymptotic
series (2.8) converges uniformly, there exists ε0 such that for 0 ≤ ε ≤ ε0

∂2F

∂y∂ξ
= 1 +

N+1∑
n=1

εn
∂2F

∂y∂ξ
+ O(εN+2) > 0.

According to the inverse function theorem, the near-identity transformations (2.10)
define classical perturbation series for ξ(x, y, ζ) and η(x, y, ζ) in powers of ε (see Chap-
ter 2.2(a) in [23]). Here, ζ is the fast “time” for periodic oscillations of H(ξ, η, z/ε)
and z is the slow “time” for averaged dynamics of the new canonical variables (x, y).

For N = 0, the leading-order averaged dynamical system is

dx

dz
=

∂h0

∂y
,

dy

dz
= −∂h0

∂x
,(2.14)
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where h0(x, y) is the leading-order averaged Hamiltonian H0(x, y):

H0(x, y) = h0(x, y) =

∫ 1

0

H(x, y, ζ)dζ.(2.15)

The leading-order averaged Hamiltonian can be computed explicitly from (2.3), (2.5),
and (2.15) as

h0(x, y) = d0y − e

2my1/2
log [f0(x, y)] ,(2.16)

where

f0(x, y) =
y(x + m) + (1 + y2(x + m)2)1/2

y(x − m) + (1 + y2(x − m)2)1/2
.(2.17)

The leading-order Hamiltonian h0(x, y) does not depend on parameter l. However,
the first-order correction term h1(x, y) does depend on l in the first-order averaged
Hamiltonian H1(x, y).

2.2. First-order averaged Hamiltonian H1(x, y). The first-order averaged
Hamiltonian can be easily derived from the formalism of the normal form transfor-
mations. It follows from (2.8), (2.10), and (2.11) that the first-order correction term
F1(x, y, ζ) is the periodic mean-zero function of ζ:

F1(x, y, ζ) = {h0(x, y) − H(x, y, ζ)}−1 ,(2.18)

where {H(x, y, ζ)}−1 is the mean-zero antiderivative of H(x, y, ζ) in ζ; see (2.2).
Expanding the near-identity canonical transformations (2.8) and (2.10) in powers of
ε, we define the perturbation series for ξ(x, y, ζ) and η(x, y, ζ):

ξ = x + εξ1(x, y, ζ) + O(ε2), ξ1 = −∂F1

∂y
(x, y, ζ),(2.19)

η = y + εη1(x, y, ζ) + O(ε2), η1 =
∂F1

∂x
(x, y, ζ).(2.20)

Similarly, the first-order correction term h1(x, y) is found in the form

h1(x, y) =

∫ 1

0

(
−∂H

∂x

∂F1

∂y
+

∂H

∂y

∂F1

∂x
− ∂2F1

∂ζ∂x

∂F1

∂y

)
(x, y, ζ)dζ(2.21)

=

∫ 1

0

(
∂H

∂y

∂F1

∂x

)
(x, y, ζ)dζ,(2.22)

where we have used (2.9) and (2.18) for the second equality in (2.22). The first-order
averaged dynamical system (2.13) then takes the form

dx

dz
=

∂h0

∂y
+ ε

∂h1

∂y
,

dy

dz
= −∂h0

∂x
− ε

∂h1

∂x
.(2.23)

A remarkable result is that the first-order correction term h1(x, y) vanishes in the case
of symmetric maps, when l = 1/2.

Lemma 2.2. When the dispersion map is symmetric, i.e., l = 1/2, then h1(x, y) =
0 and F1(x, y, 0) = F1(x, y, l) = 0.
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Proof. When d(ζ) = 4 for z ∈ [0, 1/2) and d(ζ) = −4 for z ∈ [−1/2, 0) (see (1.7)),
the mean-zero antiderivative function d−1(ζ) is even in ζ, i.e., d−1(−ζ) = d−1(ζ) (see
(2.3)). As a result, the Hamiltonian H(x, y, ζ) in (2.5) can be represented by the
Fourier cosine-series:

H(x, y, ζ) = h0(x, y) +

∞∑
n=1

cn(x, y) cos(2πnζ),(2.24)

where cn(x, y) are some Fourier coefficients. As a result, the first-order correction
term F1(x, y, ζ) given by (2.18) is computed as the Fourier sine-series:

F1(x, y, ζ) = −
∞∑

n=1

1

2πn
cn(x, y) sin(2πnζ).(2.25)

It is clear that F1(x, y, 0) = F1(x, y, 1/2) = 0. The first-order correction h1(x, y) given
by (2.22) is the average of the product of the Fourier cosine- and sine-series, which is
zero.

In general case, when l �= 1/2, the first-order averaging theory is equivalent to
the following result. If (x, y) solve the averaged equations (2.23) and (ξ, η) solve the
full equations (2.4)–(2.5) with close initial values—|ξ0−x0− εξ1(x0, y0, 0)| ≤ cxε2 and
|η0−y0−εη1(x0, y0, 0)| ≤ cyε2, where cx and cy are some constants, then the solutions
(x, y) and (ξ, η) remain within the linear accuracy in ε at the distances 0 ≤ z ≤ z0:

sup
z∈[0,z0]

|ξ(z) − x(z) − εξ1(x, y, ζ)| ≤ Cxε2, sup
z∈[0,z0]

|η(z) − y(z) − εη1(x, y, ζ)| ≤ Cyε2,

(2.26)

where Cx and Cy are some constants. The standard proof of this statement is based
on convergence of the perturbation series (2.19)–(2.20) [23].

When the dispersion map is symmetric with equal legs, i.e., l = 1/2, the correc-
tions ξ1(x, y, ζ) and η1(x, y, ζ) vanish at the points ζ = 0 and ζ = 1

2 . As a result, the
distance between solutions (x, y) and (ξ, η) remains within the quadratic accuracy in
ε at the ends of the dispersion map, i.e., at z = kε and z = (k − 1

2 )ε, where k ∈ Z+:

sup
z∈[0,z0]

|ξ(z = kε) − x(z = kε)| ≤ Cxε2, sup
z∈[0,z0]

|η(z = kε) − y(z = kε)| ≤ Cyε2.

(2.27)

This result is related to the Strang’s work [25] on symmetrization of the split-step
methods for solving PDEs. The quadratic convergence occurs only at the ends of the
dispersion map, while it is linear in the interior of the dispersion map.

Remark 2.1. The symmetric dispersion map with l = 1/2 can be translated for
any ζ0 such that d(ζ + ζ0) = −d(ζ0 − ζ). The first-order correction h1(x, y) vanishes
for all such symmetric maps. In particular, the symmetric dispersion map used in
numerical modeling of the NLS equation by the split-step method is d(ζ) = 4 for
ζ ∈ [0, 1/4) ∪ [3/4, 1) and d(ζ) = −4 for ζ ∈ [1/4, 3/4). This map is equivalent to our
symmetric map with l = 1/2 by the translation with ζ0 = 1/4.

The first-order correction term h1(x, y) can be found explicitly by direct compu-
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tations from (2.3), (2.5), (2.16), (2.18), and (2.22). The explicit formula is

h1(x, y) =
e2(1 − 2l)

8m2

[
(x + m)

1 + y2(x + m)2
− (x − m)

1 + y2(x − m)2

]

+
e2(1 − 2l)

16m3y2

[
log [f0(x, y)] +

2y(x − m)

(1 + y2(x − m)2)1/2
− 2y(x + m)

(1 + y2(x + m)2)1/2

]

×
[
log [f0(x, y)] +

xy

(1 + y2(x − m)2)1/2
− xy

(1 + y2(x + m)2)1/2

]

+
e2(1 − 2l)

16m3y2

[
3 + y2(x + m)2

(1 + y2(x + m)2)1/2
− 3 + y2(x − m)2

(1 + y2(x − m)2)1/2

]

×
[

1

(1 + y2(x + m)2)1/2
− 1

(1 + y2(x − m)2)1/2

]
,(2.28)

where f0(x, y) is defined by (2.17). We confirm from (2.28) that h1(x, y) = 0 for l =
1/2. The first-order averaged Hamiltonian H1(x, y) is analyzed next for existence and
stability of critical points. The critical points of the averaged Hamiltonian correspond
to the Gaussian approximation of the DM solitons.

2.3. Existence of critical points of the first-order averaged Hamilto-
nian. The first-order averaged Hamiltonian is H1(x, y) = h0(x, y) + εh1(x, y), where
h0(x, y) and h1(x, y) are given explicitly in (2.16) and (2.28).

Lemma 2.3. The points (0, y∗) are critical points of the first-order averaged
Hamiltonian H1(x, y) if y∗ is an extremum of the function H1(0, y):

H1(0, y) = d0y − e

2my1/2
log

[
f̂0(my)

]

+ ε
e2(1 − 2l)

16m3y2

[
log2

[
f̂0(my)

]
− 4my

(1 + m2y2)1/2
log

[
f̂0(my)

]
+

4m2y2

1 + m2y2

]
,(2.29)

where f̂0(my) = f0(0, y), i.e.,

f̂0(my) =

[
(1 + m2y2)1/2 + my

(1 + m2y2)1/2 − my

]
.

Proof. The variation of h0(x, y) in x leads to the only solution x = 0. The same
solution gives also an extremum of h1(x, y) in x. The variation of H1(0, y) in y defines
the critical point y = y∗.

Proof of Proposition 1.4. The first equation (1.19) follows from the condition

H ′
1(0, y) = 0. The continuous functions g

(0,1)
d are computed explicitly:

g
(0)
d = − 1

4m3/2y3/2

[
log

[
f̂0(my)

]
− 4my

(1 + m2y2)1/2

]
,(2.30)

g
(1)
d =

1

8m3y3

[
log2

[
f̂0(my)

]
(2.31)

− 2my(2 + 3m2y2)

(1 + m2y2)3/2
log

[
f̂0(my)

]
+

4m2y2(1 + 2m2y2)

(1 + m2y2)2

]
.
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The second equation (1.20) follows from the nonhomogeneous equation (2.6) reduced
for the perturbation expansion (2.19)–(2.20):

dφ

dz
=

1

4

[
d0y + y

dx

dz
+ y

∂ξ1
∂ζ

− 2H(x, y, ζ) + ε

(
d0η1 + η1

∂H

∂y
(x, y, ζ)(2.32)

+ y

(
∂ξ1
∂x

dx

dz
+

∂ξ1
∂y

dy

dz

)
+ y

∂ξ2
∂ζ

− 2

(
∂H

∂x
ξ1 +

∂H

∂y
η1

)
(x, y, ζ)

)
+ O(ε2)

]
.

Integrating (2.33) over ζ ∈ [0, 1] at the critical point (0, y∗), we define µ as

µ =
1

ε
(φ(z + ε) − φ(z)) =

1

4

[
d0y∗ − 2h0(0, y∗) − 3εh1(0, y∗) + O(ε2)

]
,(2.33)

where we have utilized (2.15) and (2.22). The continuous functions g
(0,1)
d in (1.20) are

computed explicitly:

g(0)µ =
1

16m1/2y1/2

[
5 log

[
f̂0(my)

]
− 4my

(1 + m2y2)1/2

]
,(2.34)

g(1)µ = − 1

64m2y2

[
5 log2

[
f̂0(my)

]
(2.35)

− 2my(8 + 9m2y2)

(1 + m2y2)3/2
log

[
f̂0(my)

]
+

4m2y2(4 + 5m2y2)

(1 + m2y2)2

]
.

The third equation (1.21) follows from (1.18):

s =
1

τ2min

= max
0≤z≤ε

η(z) = y + ε max
0≤ζ≤1

η1(0, y∗, ζ) + O(ε2).(2.36)

If (a, b) is a nonconstant periodic solution of z, then a(z) has at least two extremal
points on the interval z ∈ [0, ε). The extremal values for a(z) occur for z = z∗,
where b(z∗) = 0; see (1.12). It follows from (2.3) and (2.18) that d−1(ζ∗) = 0 and
F1(0, y∗, ζ∗) = 0 for ζ∗ = l/2 and ζ∗ = (1 + l)/2. As a result, b(z∗) = O(ε2) and
ξ(ζ∗) = O(ε2), see (2.1) and (2.19), i.e., a(z) and η(z) have extrema for z∗ = εζ∗.
Computing the derivative of F1(x, y, ζ) in x for (0, y∗, ζ), we find that the maximal

value of η1(0, y∗, ζ∗) occurs at ζ∗ = l/2 and the continuous functions g
(1)
s in (1.21) are

computed explicitly:

g(1)s =
m1/2y1/2

2

(
l +

l − 1

(1 + m2y2)1/2

)
+

(1 − 2l)

4m1/2y1/2
log

[
f̂0(my)

]
.(2.37)

Figures 1.1(a)–(d) are constructed with the help of explicit formulas (1.19)–(1.21),
(2.30)–(2.31), (2.34)–(2.35), and (2.37). The dotted curves show the limit ε = 0, the
solid curves show the results of the first-order averaging theory for ε > 0, with l = 0.1
fixed. The first-order averaging theory corresponds well to numerical analysis of the
full equations (1.12)–(1.13); see [4, 7, 8].

2.4. Stability of critical points of the first-order averaged Hamiltonian.
Linear stability of the critical points (0, y∗) in the first-order averaged system (2.23)
is defined by concavity of the quadratic form:

H1(x, y) − H1(0, y∗) =
1

2

∂2H1

∂x2

∣∣∣∣
(0,y∗)

x2 +
1

2

∂2H1

∂y2

∣∣∣∣
(0,y∗)

(y − y∗)2,(2.38)
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since the derivative of H1(x, y) in x is zero for any (0, y). The critical point (0, y∗)
is linearly stable if it corresponds to an extremum of the quadratic form (2.38); the
stable critical points are centers on the phase plane (x, y). The critical point is linearly
unstable if it corresponds to a saddle point of the quadratic form (2.38). The unstable
critical points appear as saddle points on the phase plane (x, y). It is easy to analyze
the linear stability of the critical point (0, y∗) with the help of the function e = fs(s)
shown on Figure 1.1(b).

Lemma 2.4. The critical point (0, y∗) of the first-order averaged Hamiltonian
H1(x, y) is stable for d0 ≥ 0. For d0 < 0, define sthr and sstab as the turning and
minimal points of the curve e = fs(s), i.e., f ′

s(sthr) = ∞ and f ′
s(sstab) = 0. The

critical point (0, y∗) is stable for d0 < 0 in the following cases: (i) for the upper
branch of the curve e = fs(s), when s ≥ sthr and (ii) for the lower branch of the curve
e = fs(s), when sthr < s < sstab.

Proof. It follows from (2.16) that

∂2h0

∂x2

∣∣∣∣
x=0

=
ey5/2

(1 + m2y2)3/2
> 0

for any y > 0. Therefore, there exists ε0 such that the curvature of H1(x, y) is positive
in x for 0 ≤ ε ≤ ε0. Then, the stability criterion is H ′′

1 (0, y∗) > 0, where

H ′′
1 (0, y) = −em3/2g

(0)′
d (my) − εe2m(1 − 2l)g

(1)′
d (my) = f ′

s(s)W (s),

where

W (s) =
[
g
(0)
d (my) + 2εe(1 − 2l)g

(1)
d (my) + O(ε2)

] [
1 + ε

e

m1/2
g(1)′s (my, l) + O(ε2)

]
.

For d0 > 0, it follows from Figure 1.1(b) and (1.19) that f ′
s(s) > 0 and g

(0)
d (my) > 0

for any y > 0. As a result, there exists ε0 such that the curvature of H1(0, y) is
positive in y for 0 ≤ ε ≤ ε0. Therefore, the critical point (0, y∗) is stable for d0 ≥ 0
and 0 ≤ ε ≤ ε0.

For d0 < 0, the upper and lower branches of the function e = fs(s) are separated
by the point s = sthr, where f ′

s(sthr) = ∞ (see Figure 1.1(b)). Since H ′′
1 (0, y) may not

be singular in the domain y > 0, the function W (s) changes sign at s = sthr. It follows

from (1.19) that g
(0)
d (my) < 0 for d0 < 0. Therefore, it is clear that W (s) > 0 for the

upper branch of e = fs(s) and W (s) < 0 for the lower branch of e = fs(s) on Figure
1.1(b). On the other hand, f ′

s(s) > 0 for the upper branch of e = fs(s) and f ′
s(s) < 0

for the lower branch of e = fs(s) between sthr < s < sstab, where f ′
s(sstab) = 0; see

Figure 1.1(b). As a result, the curvature of H1(0, y) in y is positive for the two cases
(i) and (ii). For the lower branch of e = fs(s) at s > sstab, the curvature of H1(0, y)
in y is negative, since f ′

s(s) > 0 and W (s) < 0. As a result, the critical point (0, y∗)
is linearly unstable for the lower branch of e = fs(s) at s > sstab.

Lemma 2.4 corresponds to Proposition 1.8 for Gaussian pulses in the first-order
averaging theory. At the plane (µ, e), the point s = sstab is the point of minimal e,
i.e., it is a branching point of the function e = fµ(µ). As a result, for d0 < 0, the
upper branch of the function e = fµ(µ) is linearly unstable, while the lower branch of
the function e = fµ(µ) is linearly stable [13].

We compute the phase plane H1(x, y) = const of the first-order averaged Hamil-
tonian from (2.16) and (2.28). The phase plane is shown on Figure 2.1(a)–(b) in
standardized variables X = x/m and Y = my for D0 = 0.015 and D0 = −0.015,
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Fig. 2.1. The contour levels of the first-order averaged Hamiltonian H1(X,Y ) for D0 = 0.015
(a) and D0 = −0.015 (b). The other parameters are E = 2 and l = 0.1.

with l = 0.1. In the initial-value problem, the energy parameter is constant, taken as
E = 2.

For D0 ≥ 0 there is only one critical point, which is a center (see Figure 2.1(a)).
The trajectories of the dynamical system (2.23) are all closed around the stable center
point. This dynamics corresponds to small oscillations of the DM soliton, perturbed
by an initial condition.
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For D0 < 0, two critical points coexist for the same value of E. The critical
point with a larger value of Y∗ is unstable (saddle point), while that with smaller
value of Y∗ is stable (center) (see Figure 2.1(b)). The critical point with a larger
value of Y∗ corresponds to a shorter DM soliton. If the shorter soliton is shortened
by an initial perturbation, i.e., Y (0) > Y∗, it is destroyed, since the trajectory (X, Y )
is unbounded on the phase plane of the first-order averaged system. We speculate
that the shorter soliton transforms into chirped quasi-linear waves but this process is
beyond the variational Gaussian approximation. Since solutions of (1.12)–(1.13) are
bounded in the domain D+ for any finite z, the transformation happens over infinite
propagation distances z.

In the other case, when the shorter DM soliton is broadened by the initial per-
turbation, i.e., Y (0) < Y∗, the trajectory (X, Y ) is trapped inside the separatrix loop
of the center point. In this case, the pulse undertakes large-amplitude oscillations
around the stable longer DM soliton, similarly to the case D0 ≥ 0. Instability of short
DM solitons along the lower branch of the (E, S) curve is confirmed in numerical
computations [7].

3. Reduction to an averaged integral NLS equation. Here we analyze and
extend the integral NLS equation (1.15), derived by means of averaging of the peri-
odic NLS equation (1.5). We develop a formal method of canonical transformations
for PDEs in section 3.1. In the leading and first orders in powers of ε, we prove
convergence of the periodic NLS equation (1.5) to an averaged integral NLS equation
in section 3.2. Existence of ground states of the first-order averaged Hamiltonian is
proved for the case d0 > 0 in section 3.3.

The periodic NLS equation (1.5) has the standard Hamiltonian structure:

i
∂u

∂z
=

δH

δū
, −i

∂ū

∂z
=

δH

δu
,(3.1)

where the Hamiltonian H = H(u, ū, z/ε) is

H =
1

2

∫ ∞

−∞

[
m

ε
d
(z

ε

) ∣∣∣∣∂u

∂t

∣∣∣∣
2

+ d0

∣∣∣∣∂u

∂t

∣∣∣∣
2

− |u|4
]

dt.(3.2)

Lemma 3.1. Define a fundamental solution of the linear periodic equation

i
∂u

∂z
+

m

2ε
d
(z

ε

) ∂2u

∂t2
= 0(3.3)

in the operator form:

u(z, t) = T
(z

ε

)
u(0, t).(3.4)

The operator T (ζ) for ζ = z/ε is a unitary operator with unit period:

T−1(ζ) = T (ζ), T (ζ + 1) = T (ζ),(3.5)

where T̄ is complex conjugate.
Proof. In the Fourier space of t, the operator T (ζ) is a multiplication operator:

û(z, ω) = Tω(ζ)û(0, ω), Tω(ζ) = e−
im
2 d−1(ζ)ω

2

,(3.6)
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where d−1(ζ) is given by (2.2)–(2.3) and û(ζ, ω) is the Fourier transform of u(ζ, t) in
t. The two properties (3.5) follow from the Fourier form (3.6).

Using a linear canonical transformation

u(z, t) = T (ζ)v(z, t), ū(z, t) = T−1(ζ)v̄(z, t), ζ =
z

ε
,(3.7)

we eliminate the fast periodic term from (1.5) and rewrite the Hamiltonian system
(3.1) in new canonical variables (v, v̄),

i
∂v

∂z
=

δH

δv̄
, −i

∂v̄

∂z
=

δH

δv
,(3.8)

with the new Hamiltonian H = H(v, v̄, ζ):

H =
1

2

∫ ∞

−∞

[
d0

∣∣∣∣∂v

∂t

∣∣∣∣
2

− |T (ζ)v|4
]

dt.(3.9)

The periodic NLS equation in new variables (v, v̄) can be written in the operator form:

i
∂v

∂z
+

1

2
d0

∂2v

∂t2
+ T−1(ζ)

(
|T (ζ)v|2 T (ζ)v

)
= 0.(3.10)

In the Fourier space of t, the operator equation (3.10) takes the form of a periodic
integral NLS equation:

i
∂v̂

∂z
(ω) − 1

2
d0ω

2v̂(ω) +

∫ ∫ ∞

−∞
Kω(ζ)v̂(ω1)v̂(ω2)¯̂v(ω1 + ω2 − ω)dω1dω2 = 0,(3.11)

where Kω(ζ) is defined by

Kω(ζ) = e−
im
2 d−1(ζ)(ω

2
1+ω2

2−(ω1+ω2−ω)2−ω2) = eimd−1(ζ)(ω−ω1)(ω−ω2).(3.12)

The asymptotic reduction of (3.11) to an integral NLS equation is based on averaging
of the Hamiltonian (3.9) in ζ [18]. A direct averaging method produces the following
leading-order averaged Hamiltonian H0(V, V̄ ):

H0(V, V̄ ) = h0(V, V̄ ) =

∫ 1

0

H(V, V̄ , ζ)dζ =
1

2

∫ ∞

−∞

[
d0

∣∣∣∣∂V

∂t

∣∣∣∣
2

−
∫ 1

0

|T (ζ)V |4dζ

]
dt.

(3.13)

The leading-order averaged Hamiltonian H0(V, V̄ ) generates the averaged integral
NLS equation in the operator form:

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
+

∫ 1

0

T−1(ζ)
(
|T (ζ)v|2 T (ζ)v

)
dζ = 0.(3.14)

In the Fourier space of t, the integral NLS equation (3.14) takes an explicit form:

i
∂V̂

∂z
(ω) − 1

2
d0ω

2V̂ (ω) +

∫ ∫ ∞

−∞
〈Kω〉V̂ (ω1)V̂ (ω2)

¯̂
V (ω1 + ω2 − ω)dω1dω2 = 0,

(3.15)
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where 〈Kω〉 is the average of Kω(ζ) over ζ ∈ [0, 1]. When the antiderivative function
d−1(ζ) is given by (2.3), the kernel 〈Kω〉 is computed explicitly as

〈Kω〉 =
sin m(ω − ω1)(ω − ω2)

m(ω − ω1)(ω − ω2)
.(3.16)

The integral equation (3.15) with the kernel (3.16) becomes (1.15) for stationary pulse
solutions: V̂ (z, ω) = Ŵ (ω)eiµz.

The asymptotic reduction of the periodic NLS equation (1.5) to the averaged
integral NLS equation (3.15) was first derived in [14, 15]. Higher-order corrections to
the averaged integral NLS equation were considered in [26, 27] with the help of formal
Lie transformations. We develop a method of formal canonical transformations for
the Hamiltonian H(v, v̄, ζ) and, in addition, we prove convergence of the averaging
procedure at the leading and first orders in powers of ε.

3.1. Averaging of the periodic integral NLS equation (3.11)–(3.12).
The periodic integral NLS equation (3.11)–(3.12) can be averaged with the help of
the normal form transformations, formally generalized for infinite-dimensional Hamil-
tonian systems. In this generalization, the generating functional F (v, V̄ , ζ) replaces
the generating function F (ξ, y, ζ) (see (2.8)):

F (v, V̄ , ζ) =

∫ ∞

−∞
dt

[
vV̄ +

N+1∑
n=1

εnFn(v, V̄ , ζ) + O(εN+2)

]
,(3.17)

where the correction terms Fn(V, V̄ , ζ) for 1 ≤ n ≤ (N + 1) are periodic mean-zero
functions of ζ:

Fn(V, V̄ , ζ + 1) = Fn(V, V̄ , ζ),

∫ 1

0

Fn(V, V̄ , ζ)dζ = 0.(3.18)

The generating functional F (v, V̄ , ζ) defines the near-identical canonical transforma-
tion

v̄ =
δF

δv
, V =

δF

δV̄
,(3.19)

and takes the Hamiltonian H(v, v̄, ζ) to the form

Hnew(V, V̄ , ζ) = H(v(V, V̄ , ζ), v̄(V, V̄ , ζ), ζ) +
i

ε

∂F

∂ζ
(v(V, V̄ , ζ), V̄ , ζ)

= HN (V, V̄ ) + O(εN+1),(3.20)

where HN (V, V̄ ) is the Nth-order averaged Hamiltonian

HN (V, V̄ ) =

N∑
n=0

εnhn(V, V̄ ).(3.21)

When the remainder term of order of O(εN+1) is neglected, the new canonical variables
(V, V̄ ) solve the averaged Hamiltonian dynamical system:

i
∂V

∂z
=

δHN

δV̄
, −i

∂V̄

∂z
=

δHN

δV
,(3.22)
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The difference between solutions of the full system (3.8) and the averaged system
(3.22) is controlled with the accuracy of O(εN+1) on the interval 0 ≤ z ≤ z0.

The Lagrangian functional for the system (3.8) is transformed as follows:

L = i

∫ ∞

−∞
v̄

∂v

∂z
dt − H(v, v̄, ζ) = −i

∫ ∞

−∞
V

∂V̄

∂z
dt − Hnew(V, V̄ , ζ) + i

dF

dz
(v, V̄ , ζ),

(3.23)

where

dF

dz
=

1

ε

∂F

∂ζ
+

∫ ∞

−∞
dt

(
∂v

∂z

δF

δv
+

∂V̄

∂z

δF

δV̄

)
.

If F (V, V̄ , ζ) generates v̄ and V according to (3.19), then the Hamiltonian H(v, v̄, ζ)
transforms according to (3.20). The method of normal form transformations in (3.17)–
(3.23) is a formal algorithmic procedure. Still we are able to prove convergence of the
first-order averaged theory in a suitable function space; see section 3.2.

The difference between solutions of the averaged integral NLS equation (3.15) and
the periodic integral NLS equation (3.11) is defined with the help of the first-order
correction F1(V, V̄ , ζ) in (3.17). The first-order correction can be found from (3.9),
(3.13), and (3.20):

F1(V, V̄ , ζ) =
−i

2

{
|T (ζ)V |4 −

∫ 1

0

|T (ζ)V |4 dζ

}
−1

,(3.24)

where {∗}−1 stands for the mean-zero antiderivative in ζ defined by (2.2). Expanding
the near-canonical transformations (3.17) and (3.19) in powers of ε, we define the
perturbation series for v(V, V̄ , ζ):

v = V + εiΦ(V, V̄ , ζ) + O(ε2), v̄ = V̄ − εiΦ(V, V̄ , ζ) + O(ε2),(3.25)

where Φ(V, V̄ , ζ) is formally computed as

Φ =

{
T−1(ζ)

(
|T (ζ)V |2 T (ζ)V

)
−
∫ 1

0

T−1(ζ)
(
|T (ζ)V |2 T (ζ)V

)
dζ

}
−1

.(3.26)

In the Fourier form, Φ(V, V̄ , ζ) is expressed explicitly as Φ̂ω(V, V̄ , ζ):

Φ̂ω =

∫ ∫ ∞

−∞
{Kω(ζ) − 〈Kω〉}−1 V̂ (ω1)V̂ (ω2) ˆ̄V (ω1 + ω2 − ω)dω1dω2.(3.27)

With the use of correction Φ(V, V̄ , ζ), the first-order correction term h1(V, V̄ ) of the
new averaged Hamiltonian is found in the form

h1(V, V̄ ) = −i

∫ ∞

−∞
dt

∫ 1

0

(
|T (ζ)V |2 (T−1(ζ)V̄

)
T (ζ)Φ(V, V̄ , ζ) − c.c.

)
dζ,(3.28)

where c.c. stands for complex conjugation and we have used the periodicity of Φ(V, V̄ , ζ)
in ζ. The first-order correction h1(V, V̄ ) vanishes in the case of symmetric maps, when
l = 1/2.

Lemma 3.2. When the dispersion map is symmetric, i.e., l = 1/2, then h1(V, V̄ ) =
0 and Φ(V, V̄ , 0) = Φ(V, V̄ , l) = 0.



766 DMITRY E. PELINOVSKY AND VADIM ZHARNITSKY

Proof. If l = 1/2, then the mean-zero antiderivative function d−1(ζ) is even:
d−1(−ζ) = d−1(ζ). The operator T̂ω(ζ) and the kernel Kω(ζ) in (3.6) and (3.12) are
even functions of ζ and can be expanded into the Fourier cosine-series, e.g.,

Kω(ζ) = 〈Kω〉 +

∞∑
n=1

kωn cos(2πnζ).(3.29)

It follows from (3.27) that the first-order correction Φ̂ω(V, V̄ , ζ) is expanded into the
Fourier sine-series:

Φ̂ω(V, V̄ , ζ) =

∞∑
n=1

φωn(V, V̄ ) sin(2πnζ).(3.30)

The integrand of (3.28) contains only the product of the Fourier cosine- and sine-series,
which has zero mean.

The first-order averaged Hamiltonian is finally defined as H1(V, V̄ ) = h0(V, V̄ ) +
εh1(V, V̄ ), where h0(V, V̄ ) and h1(V, V̄ ) are given by (3.13) and (3.28).

3.2. Averaging theorems for the first-order averaged integral NLS
equation. Here we justify the first-order averaging theory for the periodic integral
NLS equation (3.10). In order to shorten notation, we introduce the operator Q(v, ζ)
for the cubic nonlinear term in (3.10):

Q(v, ζ) = Q(v, v, v, ζ), Q(u, v, w, ζ) = T−1(ζ)
(

T (ζ)u T (ζ)v T (ζ)w
)

.(3.31)

In the operator form,

Φ(V, V̄ , ζ) = {Q(V, ζ) − 〈Q〉(V )}−1 ,

and the first-order averaged integral NLS equation can be written in the form

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
+ 〈Q〉(V ) + ε〈Q1〉(V ) = 0,(3.32)

where

〈Q〉(V ) =

∫ 1

0

Q(V, ζ)dζ,(3.33)

and

〈Q1〉(V ) =
δh1

δV
= i

∫ 1

0

[Q(V, V, Φ, ζ) − 2Q(V, Φ, V, ζ)] dζ.(3.34)

First, we list some properties of Q and Φ and formulate a local existence result for
the first-order averaged integral NLS equation (3.32).

Proposition 3.3. Let u, v, w be in Hs(R) (s ≥ 0); then the following inequalities
hold:

||Q(u, v, w, ζ)||Hs ≤ Cs||u||Hs ||v||Hs ||w||Hs ,(3.35)

||Q(u, ζ)||Hs ≤ Cs||u||3Hs ,(3.36)

||〈Q(u)〉||Hs ≤ Cs||u||3Hs ,(3.37)

||Φ(u, ū, ζ)|| ≤ Cs||u||3Hs ,(3.38)

||Q(u, u, Φ(u, ū, ζ), ζ)|| ≤ Cs||u||5Hs ,(3.39)

||〈Q(u, u, Φ(u, ū, ∗), ∗)〉|| ≤ Cs||u||5Hs .(3.40)
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Proof. The first inequality is proven using the well-known property of Hs(R)
with, e.g., s ≥ 1,

||uv||Hs ≤ Cs||u||Hs ||v||Hs ,

the isometric properties of T (ζ),

||T (ζ)u||Hs = ||u||Hs ,

and

T (ζ)Q(u, v, w, ζ) = T (ζ)uT (ζ)vT (ζ)w ⇒ ||T (ζ)Q(u, v, w, ζ)||Hs

≤ C||T (ζ)u||Hs ||T (ζ)v||Hs ||T (ζ)w||Hs ⇒ ||Q(u, v, w, ζ)||Hs ≤ C||u||Hs ||v||Hs ||w||Hs .

The remaining inequalities (3.36)–(3.40) are obtained by direct application of the first
inequality (3.35).

Proposition 3.4. Let V (0) ∈ Hs(R) with s ≥ 1. Then there exists z0 >
0 such that the first-order averaged equation (3.32) has a unique solution V (z) ∈
L∞([0, z0], Hs(R)).

Proof. The local existence for (3.32) with ε = 0 has been proven in [28] by using
the standard application of contraction mapping. In the general case, when ε �= 0,
the proof of local existence is similar. First, we rewrite (3.32) in the integral form:

V (z) = T0(z)V (0) +

∫ Z

0

T0(z − z′) (〈Q〉(V (z′)) + ε〈Q1〉(V (z′))) dz′,

where T0(z) is the operator associated with the fundamental solution of the linear
Schrödinger equation:

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
= 0.

Estimating the difference between two solutions, we obtain

||V1(z) − V2(z)||Hs ≤ z0Cs(||V1(0)||Hs , ||V2(0)||Hs , ε)||V1(0) − V2(0)||Hs ,

which is a contraction if z0 is sufficiently small (uniformly in ε). Using the standard
energy estimates, we also obtain

∂

∂z
||V (z)||2Hs ≤ Cs(||V (z)||2Hs , ε)||V (z)||2Hs ,

where Cs is a smooth function in both variables, thus implying uniqueness.
Proposition 3.5. Let V (0) ∈ H1(R) and d0 �= 0. Then there exists a global

solution V ∈ L∞([0,∞), H1(R)) with initial data V (0).
Proof. For the proof we use first-order averaged Hamiltonian H1(V, V̄ ), conserved

in z. It is shown in section 3.3 that the Hamiltonian H1(V, V̄ ) is bounded uniformly
in ε ∈ [0, ε0], provided ||V ||L2 is fixed. Therefore, since the Hamiltonian is conserved
in z, the gradient term must be bounded:∫ ∞

−∞
|∂tV (z)|2dt ≤ C(||V (0)||L2 , ||∂tV (0)||L2 , d0),

which implies that ||V (z)||H1 is uniformly bounded, thus proving global existence of
solutions.
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Remark 3.1. If d0 = 0, then a global solution V (z) still exists in H1(R), although
it is not uniformly bounded.

Before proving convergence of the first-order averaging theory, we reproduce the
leading-order averaging theory from [28].

Theorem 3.6 (see [28]). Let V (z) ∈ L∞([0, z0], Hs(R)), where s ≥ 2, be a
solution of the averaged NLS equation (3.32) with ε = 0 and v(z) be a solution of the
full equation (3.10) such that ||v(0) − V (0)||Hs−2 ≤ Cε. Then, for sufficiently small
positive ε < ε0 we have v(z) ∈ L∞([0, z0], Hs−2(R)) and the solutions stay close at
the distances 0 ≤ z ≤ z0:

sup
z∈[0,z0]

||v(z) − V (z)||Hs−2 ≤ Cε.(3.41)

We prove the analogous theorem for the first-order averaged integral NLS equation
(3.32).

Theorem 3.7. Let V (z) ∈ L∞([0, z0], Hs(R)), where s ≥ 4, be a solution of
the first-order averaged integral NLS equation (3.32) and v(z) be a solution of the
full equation (3.10) such that ||v(0) − V (0) − iεΦ(V (0), V̄ (0), 0)||Hs−4 ≤ Cε. Then,
for sufficiently small positive ε < ε0 we have v(z) ∈ L∞([0, z0], Hs−4(R)) and the
solutions are ε-close on 0 ≤ z ≤ z0:

sup
z∈[0,z0]

||v(z) − V (z) − iεΦ(V, V̄ , ζ)||Hs−4 ≤ Cε2.(3.42)

Proof. We start with the averaged integral NLS equation (3.32) and use near-
identical transformations to transform it to the periodic integral NLS equation (3.10).
In the last step we compare the solutions of the transformed and the reduced equations
by using Gronwall’s inequality. This approach has a technical advantage over the
“direct” approach, which starts from the original equation (3.10) and transforms it
to the averaged equation (3.32). Indeed, for the periodic equation (3.10), there is no
a priori ε-independent estimate on the existence interval.

Let us make a transformation V = v1 − w1 in (3.32), where v1 is a new variable
and w1 is a small correction. We formally obtain

i
∂v1
∂z

+
1

2
d0

∂2v1
∂t2

+ Q(v1, ζ)(3.43)

= i
∂w1

∂z
+

1

2
d0

∂2w1

∂t2
+ Q(v1, ζ) − 〈Q〉(V ) + ε〈Q1〉(V ).

Choosing w1 = iεΦ(V, V̄ , ζ), we obtain

i
∂v1
∂z

+
1

2
d0

∂2v1
∂t2

+ Q(v1, ζ) = R1(V, ζ),(3.44)

where

R1(V, ζ) = −ε
∂

∂z
Φ(V, V̄ , ζ) + εi

1

2
d0

∂2

∂t2
Φ(V, V̄ , ζ)(3.45)

+ Q(v1, ζ) − Q(V, ζ) + ε〈Q1〉(V ).

We expand the right-hand side of (3.46) as

Q(v1, ζ) − Q(V, ζ) = Q(V + iεΦ, ζ) − Q(V, ζ)

= −iεQ(V, V, Φ, ζ) + 2iεQ(V, Φ, V, ζ) − ε2Q(Φ, Φ, V, ζ)

+ 2ε2Q(Φ, v1, Φ, ζ) + iε3Q(Φ, ζ).
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If 〈Q1〉(V ) is defined by (3.34), then (3.46) transforms to the periodic NLS equation
with a mean-zero error mismatch of order O(ε):

R1 = −ε
∂

∂z
Φ(V, V̄ , ζ) + εi

1

2
d0

∂2

∂t2
Φ(V, V̄ , ζ)

− iε{Q(V, V, Φ, ζ)} + 2iε{Q(V, Φ, V, ζ)}
− ε2Q(Φ, Φ, V, ζ) + 2ε2Q(Φ, v1, Φ, ζ) + iε3Q(Φ, ζ),

where {Q} stands for the mean-zero periodic part of Q in ζ. By using properties of
Q and Φ from Proposition 3.3 and taking into account the loss of two derivatives, we
find the estimate ||R1(V, ζ)||Hs−2 ≤ Cε.

Now, we carry out another transformation v1 = v2−w2, where w2 = −iε {R1(V, ζ)}−1.
The mean-zero antiderivative of R1(V, ζ) in ζ satisfies the estimate ||w2||Hs−2 ≤ Cε2.
After rearranging the terms we recover the equation

i
∂v2
∂z

+
1

2
d0

∂2v2
∂t2

+ Q(v2, ζ) = R2(V, ζ),(3.46)

where R2(V, ζ) has a long expression in powers of ε2 and higher. With the help of
Proposition 3.3, we can estimate all terms of R2 as ||R2(V, ζ)||Hs−4 ≤ Cε2. Comparing
solutions of (3.46) and (3.10), we obtain an equation for the difference f := v2 − v:

i
∂f

∂z
+

1

2
d0

∂2f

∂t2
+ Q(v2, ζ) − Q(v, ζ) = R2(V, ζ).(3.47)

The difference in the left-hand side of (3.47) can be estimated as

||Q(v2, ζ) − Q(v, ζ)||Hs−2 = ||Q(v2, ζ) − Q(f − v2, ζ)||Hs−2

≤ Cs(||f ||Hs−2 , ||v2||Hs−2)||f ||Hs−2 .

The growth of f can be estimated by using the standard energy estimates. We
differentiate the equation for f 1, 2, . . ., n times, multiply each of them with ∂kf
(k = 1, 2, . . ., n), subtract complex conjugates, and finally take the sum to obtain

∂

∂z
||f ||2Hn ≤ Cs(||f ||Hn , ||v2||Hn)||f ||2Hn + C||R2||Hn ||f ||Hn .

In the last inequality, we can take n: 0 ≤ n ≤ s − 4 (thus, we have to assume s ≥ 4)
and using Gronwall’s inequality, we obtain

||f(z)||Hs−4 ≤ C1(eC2zε2 + ||f(0)||Hs−4),

which proves (3.42).
Corollary 3.8. Suppose the dispersion map d(ζ) is symmetric with equal legs,

i.e., l = 1/2. If the solutions V (z) and v(z) are close in the sense of ||v(0) −
V (0)||Hs−4 ≤ Cε2, then for sufficiently small positive ε < ε0 the solutions remain
within the quadratic accuracy at the distances 0 ≤ z ≤ z0 at the points z = kε and
z = (k − 1

2 )ε, where k ∈ Z+:

sup
z∈[0,z0]

||v(z = kε) − V (z = kε)||Hs−4 ≤ Cε2.(3.48)

The quadratic convergence is based on the fact that h1(V, V̄ ) = 0 for l = 1/2
and Φ(V, V̄ , 0) = Φ(V, V̄ , l) = 0; see Lemma 3.2. As a result, we have an improved
(quadratic) convergence between solutions of the periodic integral NLS equation (3.11)
and the integral NLS equation (3.15). It is only the linear convergence between
solutions of the full and averaged equations valid at any point z of the dispersion map
in the general case l �= 1/2.
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3.3. Existence and stability of ground states of the first-order aver-
aged Hamiltonian. The first-order averaged Hamiltonian functional H1(V, V̄ ) is a
constant of motion in the averaged system; therefore its extrema are expected to be
stable solutions. Unfortunately, Hamiltonians in such problems are not bounded from
either above or below. The way out is to consider a constrained variational problem,
since there exists another conserved quantity e defined by (1.11). We show that the
obtained Hamiltonian possesses a constrained minimum for the case d0 > 0. The
constrained minimum implies stability of a stationary pulse in this case.

Let us consider the following minimization problem:

PE = inf

{
H1(V, V̄ ), V ∈ H1(R),

∫ +∞

−∞
|V |2dt = E

}
.(3.49)

First, we show that the Hamiltonian is bounded from below, PE > −∞, which is a
necessary condition for the presence of a smooth minimizer. Note that the Hamilto-
nian is unbounded from above for d0 > 0 because of the gradient term in (3.13).

Proposition 3.9. The Hamiltonian functional H1(V, V̄ ) is uniformly bounded
from below if d0 ≥ 0 and E is fixed.

Proof. Since the gradient term is positive, we need only to establish the bound-
edness of the other two terms. The leading-order term h0(V, V̄ ) can be bounded by
applying Hölder and Strichartz estimates [28]:∫ 1

0

∫ +∞

−∞
|T (ζ)V |4dtdζ =

∫ 1

0

∫ +∞

−∞
|T (ζ)V ||T (ζ)V |3dtdζ

≤
(∫ 1

0

∫ +∞

−∞
|T (ζ)V |2dtdζ

) 1
2
(∫ 1

0

∫ +∞

−∞
|T (ζ)V |6dtdζ

) 1
2

≤ E
1
2 CSE

3
2 = CSE2,

where we have used the isometry of T (ζ) in L2(R) as well as the Strichartz inequality:∫ +∞

−∞

∫ +∞

−∞
|T (ζ)V |6dtdz ≤ C2

sE3.

Now we estimate the first-order term h1(V, V̄ ) as∣∣∣∣
∫ 1

0

∫ +∞

−∞
T (ζ)V

2
T (ζ)V T (ζ)Φ(V, V̄ , ζ) dtdζ

∣∣∣∣
≤

(∫ 1

0

∫ +∞

−∞
|T (ζ)V |6dtdζ

) 1
2
(∫ 1

0

∫ +∞

−∞
|T (ζ)Φ(V, V̄ , ζ)|2dtdζ

) 1
2

≤ CSE
3
2

(∫ 1

0

∫ +∞

−∞
|Φ(V, V̄ , ζ)|2dtdζ

) 1
2

.

The integral of |Φ(V, V̄ , ζ)|2 in ζ can be estimated from the definition (3.26), rewritten
as

Φ(V, V̄ , ζ) =

∫ ζ

0

Ψ(ζ1, t)dζ1 −
∫ 1

0

∫ ζ2

0

Ψ(ζ1, t)dζ1dζ2 −
(

ζ − 1

2

)∫ 1

0

Ψ(ζ1, t)dζ1,

where we used the notation

Ψ(ζ, t) = T−1(ζ)
(
|T (ζ)V |2 T (ζ)V

)
.
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The product |Φ|2 contains 10 terms, which can be estimated in a straightforward
way using Strichartz estimate. We give an example of how to carry out one of these
estimates:∣∣∣∣∣

∫ 1

0

dζ

∫ ∞

−∞
dt

[∫ ζ

0

Ψ(ζ1, t)dζ1

∫ 1

0

∫ ζ3

0

Ψ(ζ2, t)dζ2dζ3

]∣∣∣∣∣
≤

∣∣∣∣
∫ 1

0

dζ

∫ ∞

−∞
dt

[∫ 1

0

|Ψ(ζ1, t)|dζ1

∫ 1

0

∫ 1

0

|Ψ(ζ2, t)|dζ2dζ3

]∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
dt

[∫ 1

0

|Ψ(ζ1, t)|dζ1

∫ 1

0

|Ψ(ζ2, t)|dζ2

]∣∣∣∣
=

∫ 1

0

dζ2

∫ 1

0

dζ1

∫ ∞

−∞
dt|Ψ(ζ1, t)||Ψ(ζ2, t)|

≤
(∫ 1

0

dζ1

∫ 1

0

dζ2

∫ ∞

−∞
dt|Ψ(ζ1, t)|2

) 1
2
(∫ 1

0

dζ1

∫ 1

0

dζ2

∫ ∞

−∞
dt|Ψ(ζ2, t)|2

) 1
2

≤
∫ 1

0

∫ ∞

∞
|Ψ(ζ, t)|2dtdζ.

The last integral is estimated using the definition of Ψ(ζ, t) and the Strichartz esti-
mate: ∫ 1

0

∫ ∞

−∞
|Ψ(ζ, t)|2dtdζ =

∫ 1

0

∫ ∞

−∞

∣∣∣T−1(ζ)
(

T (ζ)V 2T (ζ)V
) ∣∣∣2dtdζ

=

∫ 1

0

∫ ∞

−∞
|T (ζ)V |6dtdζ ≤ C2

SE3.(3.50)

Therefore the term h1(V, V̄ ) in the Hamiltonian H1(V, V̄ ) is bounded by CSE3/2CSE3/2

= C2
SE3.

The next step is to verify the subadditivity condition which is necessary for the
construction of a converging minimizing sequence [31]. The subadditivity property
holds in the case ε = 0 (see [28]). Here we show that it also holds for sufficiently small
ε.

Lemma 3.10. For any E > 0 there exist ε0 > 0 (which may depend on E) such
that for any 0 < ε < ε0 any minimizing sequence Vn possesses a subsequence Vnk

satisfying the subadditivity property

PE1+E2 < PE1
+ PE2 provided E = E1 + E2.(3.51)

Proof. The proof is a simple application of a scaling argument, followed by some
estimates using smallness of ε. Consider a one-parameter family V λ =

√
λV with

λ ∈ (0, 1); then

Eλ =

∫ ∞

−∞
|V λ|2dt = λE.

Introducing the notation for the Hamiltonian,

H1(V, V̄ ) = H(2)(V, V̄ ) − H(4)(V, V̄ ) + εH(6)(V, V̄ ),
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where H(2,4,6)(V, V̄ ) represent quadratic gradient term, positive quartic term, and the
sixth order perturbation term, respectively. The Hamiltonian then scales as follows:

Hλ
1 = λH(2) − λ2H(4) + λ3εH(6)

and then

Hλ
1 − λH1 = (λ − λ2)H(4) + (λ − λ3)εH(6) = λ(1 − λ)(H(4) + (1 + λ)εH(6)).

Note that for ε = 0, Hλ
1 > λH1, which implies the subadditivity PλE > λPE . The

latter results in (3.51) for the same E. For sufficiently small ε, the condition (3.51) is
expected to hold since H(6) is uniformly bounded. Indeed, if we fix E > 0, then for
ε = 0 the infimum is negative, P 0

E < 0, as shown in [28]. For positive ε, the infimum
cannot change by more than εC2

SE3; therefore P ε
E ≤ P 0

E + εC2
SE3 remains negative.

By definition, for any minimizing sequence we have H(Vn) → P ε
E and therefore

for sufficiently large n ≥ N the quartic term H(4) has to be bounded from below:

H(4) ≥ |P ε
E | − εC2

SE3 − δ(N) ⇒ H(4) ≥ |P 0
E | − 2εC2

SE3 − δ(N).

Then we prove the estimate:

H(4) + (1 + λ)εH(6) ≥ |P 0
E | − 2εC2

SE3 − δ(N) − 2εC2
SE3

= |P 0
E | − 4εC2

SE3 − δ(N) ≥ |P 0
E | − 5εC2

SE3,

where the last step in the inequalities was done by taking N sufficiently large. There-
fore, by requiring that

5εC2
SE3 <

1

2
|P 0

E |

we achieve the subadditivity condition for the minimizing sequence.
We will also use lemma on localization from [28]. The lemma says that finite

energy cannot propagate too far in the linear Schrödinger equation if the initial data
are sufficiently smooth.

Lemma 3.11 (see [28]). Let V ∈ H1(R), T (ζ) be a free Schrödinger propagator
and let

ε(ζ) = sup
ξ∈R

∫ ξ+1

ξ−1

|T (ζ)V |2dt.(3.52)

Then the following estimate holds:

ε(ζ) ≤ 2ε(0) +
√

ε2(0) + 2Cε(0)ζ.(3.53)

Now, we are ready to establish the convergence of a minimizing sequence. The
two results above make the convergence proof straightforward and very similar to the
one with ε = 0; see [28]. Therefore, we sketch only the proof of the main result,
providing details only when they are different from the case ε = 0.

Proposition 3.12. If d0 > 0 and 0 < ε <
|P 0

E |
10C2

S
E3 , then there exists a minimizer

W ∈ H1(R) ∩ C∞(R) of the constrained minimization problem (3.49).
Proof. First we observe that any minimizing sequence Vn ∈ H1(R) must possess

a bounded derivative ∫ ∞

−∞

∣∣∣∣∂Vn

∂t

∣∣∣∣
2

dt < C,(3.54)
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for otherwise {H1(Vn, V̄n)}∞n=0 would have an unbounded subsequence (since H(2)(Vn, V̄n)
would dominate over H(4)(Vn, V̄n) and H(6)(Vn, V̄n), which are uniformly bounded).
Then there exists a weakly converging subsequence in L2(R). In order to assure the
strong convergence Vn → W with W satisfying the constraint (3.49), we have to show
that the sequence is tight (the energy does not escape to infinity1). We assume that
n > N with N sufficiently large so that the subadditivity condition would hold. Now,
we use the concentration-compactness principle [29], which says that there exists a
subsequence Vnk

, denoted by Vk, for which one of the following statements is true:
1. (convergence) For some sequence {tk}∞k=0 the translated sequence converges

to some limit Vk(t − tk) → W (as k → ∞) satisfying the constraint (3.49).
2. (vanishing) The following identity is true:

sup
y∈R

∫ y+1

y−1

|Vk|2dt → 0 as k → ∞.

3. (splitting) There exist E1, E2 > 0 (E = E1 + E2) such that for any ε > 0 one
can find two sequences vk, wk and K > 0 so that for any k > K we have∫ ∞

−∞
|Vk − (Wk + Uk)|2dt < ε,

where ∫ ∞

−∞
|Wk|2dt = E1,

∫ ∞

−∞
|Uk|2dt = E2

such that

dist(supp(Wk), supp(Uk)) → ∞.

Our goal is to rule out the second and the third possibilities in order to prove con-
vergence of a minimizing sequence. It has been shown in [28] for ε = 0 that van-
ishing implies that H(4)(Vk, V̄k) → 0. This is in contradiction with the sequence
being minimizing as the infimum is negative and H1(Vk, V̄k) → 0. The proof that
H(4)(Vk, V̄k) → 0 is based on Cazenave’s estimate [30],∫ ∞

−∞
|V |4dt ≤ C ||V ||2H1 sup

y∈R

∫ y+1

y−1

|V |2dt,(3.55)

and on the lemma on localization (3.52)–(3.53). Combing these estimates in a similar
way, we prove that H(6)(Vk) → 0.

We also show that the splitting may not occur. By contradiction, we assume
that splitting occurs and show that the sequence is not minimizing by using the
subadditivity condition (3.51). The proof is identical to the one in [28] and therefore
is omitted here.

Since both the vanishing and splitting scenarios do not occur, the concentration-
compactness principle implies that the sequence Vk → W strongly in L2(R) [29].
Using the standard argument (see section 3.1 in [28]), we show that Vk → W strongly
in H1(R). The minimizer weakly satisfies the Euler–Lagrange equation

−µW +
1

2
d0W

′′(t) + 〈Q〉(W ) + ε〈Q1〉(W ) = 0.(3.56)

1There is no problem with the local loss of compactness since on any finite interval I ⊂ R the
space H1(I) is compactly embedded in L2(I).
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Using the bootstrapping procedure, we show that the solution is smooth. If W ∈
H1(R), then 〈Q〉(W ) + ε〈Q1〉(W ) ∈ H1(R). Due to the presence of the term d0W

′′(t)
in (3.56), the solution is extended to function space W ∈ H3(R). Continuing this, we
obtain that W ∈ Hs(R) for any s ≥ 1 and W ∈ C∞(R).

The minimizer W (t) obtained in Proposition 3.12 defines a stationary pulse so-
lution V (z, t) = W (t)eiµz of the first-order averaged integral NLS equation, where
µ = f−1

µ (e) and e = fµ(µ) is a continuous function. Thus, the existence and stability
of a single branch of DM solitons is proved for d0 > 0 in the first-order averaged
integral NLS equation (3.32). This completes the proof of Proposition 1.8 for the
integral NLS approximation. If the stationary pulse solutions W (t) are computed nu-
merically, all other parameters of DM solitons can be computed for the case d0 > 0, in
direct correspondence with Proposition 1.4. Otherwise, the analytical dependencies
in (1.19)–(1.21) remain implicitly defined by the averaged integral equation (3.56).

4. Conclusion. We have studied existence and stability of dispersion-managed
(DM) solitons for the periodic NLS equation. We defined the DM solitons either as
periodic solutions of a low-dimensional system for parameters of a Gaussian pulse or
as stationary pulse solutions of the averaged integral NLS equation. In both cases, we
have found and analyzed the first-order averaged Hamiltonian. Some open problems
appear beyond this analysis and are worth mentioning here.

First, it is a conjecture that DM solitons do not exist as quasi-periodic solutions
of the periodic NLS equation (1.5), contrary to the approximating Gaussian pulses.
Recent work of Yang and Kath [19] discusses parametric resonances between localized
pulses and linear Bloch waves associated with the varying dispersion d(z). Asymptotic
and numerical analysis confirmed that the quasi-periodic pulses produce nonlocalized
radiation tails, which escape the localized region to infinity [19]. The radiation tail
is exponentially small in the limit ε → 0, i.e., it appears beyond any asymptotic
expansion in powers of ε. In our analysis, all the resonant terms are removed from
the leading and first order of the asymptotic series. As a result, the quasi-periodic
pulses exist in the averaged integral NLS equation (3.32), at least for d0 > 0.

Second, the first-order constrained Hamiltonian H1(V, V̄ ) was shown to possess a
constrained minimum only for d0 > 0. With the use of the new work by Kunze [20],
the constrained minimum can be shown to exist for d0 = 0. However, it is impossible
to prove whether or not a local extremum of the averaged Hamiltonian exists for
d0 < 0 even in the limit ε → 0. Indeed, the operator µ − 1

2d0∂tt is not positive-
definite for µ > 0 and d0 < 0, and a strong resonance occurs between spectra of a
localized pulse and linear waves. As a result, the Hamiltonian functional H1(V, V̄ ) is
unbounded from below even for the constrained problem (3.49).

Two branches of Gaussian pulse solutions exist for d0 < 0: one is stable and the
other one is unstable in the propagation in z. However, iterations of a numerical
method quickly diverge for the branch of unstable Gaussian pulses [13] and slowly
diverge for the branch of stable Gaussian pulses [21]. Rigorous analysis of existence
or nonexistence of stationary solutions of the problem (3.56) with d0 < 0 is not
completed yet.

Finally, the higher-order averaged Hamiltonian can be found and analyzed for the
case d0 > 0 in a similar manner. However, the constrained minimization procedure
fails already for the second-order Hamiltonian, which has a correction H(8)(V, V̄ )
that contains eight powers of V and V̄ . Because of such higher-order nonlinearity,
the correction H(8)(V, V̄ ) is not be bounded from below by the Strichartz estimate
(3.50). Therefore, higher-order averaged equations become less useful for analysis.
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