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Abstract. We study propagation of dispersion-managed solitons in optical fibers which are
modeled by the nonlinear Schrödinger equation with a periodic dispersion coefficient. When the
dispersion variations are weak compared to the average dispersion, we develop perturbation series
expansions and construct asymptotic solutions at the first and second orders of approximation. Due
to a parametric resonance between the dispersion map and the dispersion-managed soliton, the soliton
generates continuous-wave radiation leading to its radiative decay. The nonlinear Fermi golden rule
for radiative decay of dispersion-managed solitons is derived from the solvability condition for the
perturbation series expansions. Analytical results are compared to direct numerical simulations, and
good agreement is obtained.
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1. Introduction. This paper addresses the dispersion-periodic nonlinear Schrö-
dinger (NLS) equation,

i
∂u

∂z
+

m

2ε
Dε(z)

∂2u

∂t2
+

1

2
D0

∂2u

∂t2
+ |u|2u = 0,(1.1)

which models optical pulse propagation in dispersion-managed communication sys-
tems. Here u ∈ C is the wave envelope of the electromagnetic field, z (≥ 0) is the
distance along the optical fiber, t ∈ R is the retarded time of the optical pulse, D0

is the average dispersion, Dε(z) is an ε-periodic mean-zero dispersion map, and m is
the strength of the map variations. Lump amplification and losses are not included
in the model (1.1) for the sake of simplicity.

Special solutions of the dispersion-periodic NLS equation (1.1) are called disper-
sion-managed (DM) solitons. They have been the subject of growing interest in recent
literature [1, 2, 3]. DM solitons are periodic solutions of (1.1) in the form

u(z, t) = Φ(z, t) eiµz,(1.2)

where Φ(z + ε, t) = Φ(z, t) and µ ∈ R. Existence of periodic solutions of (1.1) is
studied with the normal-form transformations in the limit ε → 0 [4]. The normal-
form transformations average the fast periodic variations of 1

εDε(z) and reduce the
dispersion-periodic NLS equation (1.1) to an integral NLS equation [5, 6]. Bound
states of the integral NLS equation exist in the case of D0 > 0 [7] and in the case
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D0 = 0 [8]. Numerical results indicate nonexistence of bound states of the integral
NLS equation in the case D0 < 0 [9].

In what follows we consider the case D0 > 0 only. Early papers by Nijhof et
al. [11] reported numerically the existence of “exactly” periodic bound states in the
dispersion-periodic NLS equation (1.1), which do not radiate any energy. Later, more
careful numerics [3] showed that such bound states actually had nonvanishing radi-
ation tails. Recent results of Yang and Kath [10] showed that exactly-periodic DM
solitons do not exist in the dispersion-periodic NLS equation (1.1) because resonances
in the perturbation series generate nonvanishing radiation tails. These tails can be ex-
tremely small in certain parameter regimes [10], but they do not vanish when D0 > 0.

Radiation tails of DM solitons occur due to parametric resonance between the
DM soliton and the periodic variation of the dispersion. This parametric resonance
drains energy out of the DM soliton and leads to its radiative damping. Parametric
resonances can be predicted by viewing the periodic term of (1.1) as an external
forcing term:

i
∂u

∂z
+

1

2
D0

∂2u

∂t2
+ |u|2u = −m

2ε
Dε(z)

∂2u

∂t2
.(1.3)

We expand Dε(z) into a Fourier series,

Dε(z) =

∞∑
n=−∞

dn e
2πinz

ε , d0 = 0, d−n = d̄n,(1.4)

where d̄n is the complex conjugate of dn. When the nonlinear term in (1.3) is neglected
and the averaged DM soliton u(z, t) = Φ(t) eiµz is substituted into the right-hand
side of (1.3), we find a solution of the linear inhomogeneous problem in the form of
the Fourier series in z,

u(z, t) =

( ∞∑
n=−∞

un(t) e
2πinz

ε

)
eiµz.(1.5)

The correction terms un(t) take the form of Fourier integrals in t,

un(t) = −mdn
4πε

∫ ∞

−∞

ω2Φ̂(ω)eiωtdω
1
2D0ω2 + 2πn

ε + µ
,(1.6)

where Φ̂(ω) is the Fourier transform of Φ(t). The inhomogeneous solution has resonant
denominators at

ω2 = ω2
n = − 2

D0

(
µ +

2πn

ε

)
> 0.(1.7)

Resonances are absent if D0 = 0 and µ �= −2πn/ε for any integer n. This is the
only case when DM soliton solutions (1.2) may exist in the dispersion-periodic NLS
equation (1.1). In this case, the asymptotic representation of Φ(z, t) in (1.2) was
found recently in [12] in the limit ε = O(m) � 1 with the use of the inverse scattering
transform methods.

If D0 > 0, sufficiently large negative terms of the Fourier series (1.5)–(1.6) are in
resonance (1.7) for n ≤ −Nµ, where Nµ =

[
εµ
2π

]
is the integer ceiling of εµ

2π > 0. The
periodic variations of the dispersion map Dε(z) lead to a coupling of a bound state
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and linear waves of the averaged dispersion map and to the energy transfer from the
bound state to radiative waves. As a result, the pulse solution has resonant peaks in
the spectrum û(z, ω) at ω = ±ωn, and nonzero values of u(z, t) in the far-field |t| � 1,
as reported numerically in [3, 10].

Radiation damping of solitons in the presence of a weak sinusoidal dispersion
variation was considered analytically in [13]. The radiative wave amplitudes and
decay rates of solitons were computed by means of the soliton perturbation theory
for the standard NLS equation. Dynamics of DM solitons was studied in [14, 15, 16]
by variational and numerical methods. Recently, analytical and numerical studies of
the same problem were undertaken in [10] by asymptotic beyond-all-orders methods
in the limit ε = O(m) � 1. Radiation-tail amplitudes and decay rates of DM solitons
were found to be exponentially small in this limit. It was also shown in [10] that
radiation-tail amplitudes drop to near-zero values in certain windows on the m-axis.

We study here nonlinear parametric resonance of DM solitons for average-anoma-
lous dispersion (D0 > 0) in the limit m � 1, while we keep ε = O(1). This is a
different limit from the one studied in [10]. In this limit, the DM soliton decays
much faster because radiation-tail amplitudes are only algebraically small in terms of
O(m). The new feature of our analysis is that the periodic dispersion map Dε(z) is
allowed to be arbitrary in (1.4) as compared to a single sine function in [13]. Thus,
our dispersion maps include the piecewise-constant dispersion map which is widely
used in fiber communication systems.

Our analysis starts with the standard NLS equation (1.3) for m = 0, such that the
right-hand side of (1.3) is treated as a small perturbation. The first-order perturbation
theory describes generation of linear waves due to parametric resonances (1.7), and the
second-order perturbation theory leads to the decay rate of DM solitons. Methods of
our analysis are similar to the soliton perturbation theory in [13], but our calculations
are more systematic. We find that the DM soliton decays according to a nonlinear
Fermi golden rule, which generalizes the Fermi golden rule for radiative decay of bound
states in the linear Schrödinger equation with a time-periodic potential. Rigorous
analysis of decay rates in the linear Schrödinger equation was recently considered
in [17, 18], where the bound states were supported by a time-dependent periodic
potential in [17] and by a time-independent potential in [18].

This paper is structured as follows. Section 2 contains perturbation series expan-
sions and derivations of the Fermi golden rule for DM solitons. Section 3 is devoted
to analytical approximations of radiative decay of DM solitons. Section 4 describes
a comparison between the analytical and numerical results. Section 5 concludes the
paper. Appendices A and B describe technical details of the first-order solution in
the perturbation series expansions.

2. Perturbation series expansions. We start with the dispersion-periodic
NLS equation in the form (1.3), where ε is finite and m is small. If D0 > 0, we
employ the following rescaling of variables:

z = εẑ, u =
û√
ε
, t =

√
εD0 t̂, m = εD0m̂.(2.1)

When the hats are dropped, (1.3) becomes

iuz +
1

2
utt + |u|2u = −m

2
D1(z)utt,(2.2)

where the dispersion map D1(z) has unit period. In other words, we have normalized
ε and D0 in (1.3) so that ε = 1 and D0 = 1.



RESONANCE AND DECAY OF DISPERSION-MANAGED SOLITONS 1363

When m = 0, the standard NLS equation (2.2) has a bound state:

u(z, t) = Φ(t;µ)eiµz,(2.3)

where µ > 0 and Φ(t;µ) =
√

2µ sech
(√

2µ t
)
. When m �= 0, the NLS soliton (2.3)

would generate radiative tails and decay accordingly. Parameter µ of the NLS soli-
ton (2.3) changes in z, such that the z-dependence of µ(z) serves as a condition for
Poincaré continuation of the perturbation series for u(z, t) in powers of m. The Fermi
golden rule of radiative decay of NLS solitons follows from the dynamical equation for
µ = µ(z). In order to formalize this qualitative picture, we employ the transformation

u(z, t) = U(z, t;µ(z))e
i
∫ z

0
µ(z′)dz′

,(2.4)

where U(z, t;µ) solves the problem

i
∂U

∂z
+ iµ̇

∂U

∂µ
− µU +

1

2

∂2U

∂t2
+ |U |2U = −m

2
D1(z)

∂2U

∂t2
(2.5)

with the initial data U(0, t;µ0) = Φ(t;µ0) and µ(0) = µ0. The transformation (2.4)
describes the adiabatically varying orbit of the NLS soliton (2.3). We present the
asymptotic solution of (2.5) as a perturbation series for U(z, t;µ) and µ(z) in powers
of m:

U(z, t;µ) =

∞∑
k=0

mkU (k)(z, t;µ)(2.6)

and

µ̇ =
∞∑
k=1

m2kΓ(2k)(µ),(2.7)

where Γ(2k)(µ) are corrections of the Fermi golden rule for radiative decay of NLS
solitons. Substitution of (2.6)–(2.7) into (2.5) produces a chain of equations for cor-
rections of the perturbation series. At the leading, first and second orders, the chain
of perturbative equations takes the form

i
∂U (0)

∂z
− µU (0) +

1

2

∂2U (0)

∂t2
+ |U (0)|2U (0) = 0,(2.8)

i
∂U (1)

∂z
− µU (1) +

1

2

∂2U (1)

∂t2
+ 2|U (0)|2U (1) + U (0)2Ū (1) = −1

2
D1(z)

∂2U (0)

∂t2
,(2.9)

and

i
∂U (2)

∂z
− µU (2) +

1

2

∂2U (2)

∂t2
+ 2|U (0)|2U (2) + U (0)2Ū (2)(2.10)

= −iΓ(2)(µ)
∂U (0)

∂µ
− 1

2
D1(z)

∂2U (1)

∂t2
− 2|U (1)|2U (0) − U (1)2Ū (0).

Initial conditions for these equations are

U (0)(0, t;µ0) = Φ(t;µ0), µ(0) = µ0,(2.11)
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and

U (k)(0, t;µ0) = 0, k ≥ 1.(2.12)

Order O(1). The nonlinear equation (2.8) at order O(1) with initial data (2.11) has
a unique solution, U (0)(z, t;µ) = Φ(t;µ), which is the NLS soliton with the adiabatic
change of µ = µ(z).

Order O(m). The linear inhomogeneous equation (2.9) at order O(m) has the
Fourier series solution

U (1)(z, t;µ) =

∞∑
n=−∞

U (1)
n (z, t;µ) e2πinz,(2.13)

where U
(1)
0 = 0 and (U

(1)
n , Ū

(1)
−n) at n ≥ 1 solve the coupled equations

i
∂U

(1)
n

∂z
− (µ + 2πn)U (1)

n +
1

2

∂2U
(1)
n

∂t2
+ Φ2(t;µ)

(
2U (1)

n + Ū
(1)
−n

)
(2.14)

= −dn
2

Φ′′(t;µ),

−i
∂Ū

(1)
−n

∂z
− (µ− 2πn) Ū

(1)
−n +

1

2

∂2Ū
(1)
−n

∂t2
+ Φ2(t;µ)

(
2Ū

(1)
−n + U (1)

n

)
(2.15)

= −dn
2

Φ′′(t;µ).

It follows from (2.12) that the system (2.14)–(2.15) is supplemented with zero initial

conditions: U
(1)
n (0, t;µ0) = 0 for any |n| ≥ 1. Solutions of the system (2.14)–(2.15) are

constructed in Appendix A with the use of the spectral decomposition for a linearized

NLS operator [19, 20]. Asymptotic limits of the correction terms U
(1)
n (z, t;µ) are

obtained in Appendix B with the use of generalized functions. These calculations

show that the continuous-wave radiation in the solution U
(1)
n (z, t;µ) at large distance

z and time t is given by the following expression [see (A.1) and (B.9)]:

lim
|t|→∞,z→∞

U
(1)
−n = −πi

√
2µ d−n(kn + i)2

4kn
sech

πkn
2

ei
√

2µ kn|t|, n ≥ Nµ,(2.16)

and

lim
|t|→∞,z→∞

U
(1)
−n = 0, n < Nµ,(2.17)

where

kn =

√
2πn

µ
− 1 > 0, Nµ =

[ µ

2π

]
.(2.18)

This result will be used at order O(m2) to calculate the decay rate Γ(2)(µ) of DM
solitons.

Order O(m2). Solution of the linear inhomogeneous equation (2.11) at order
O(m2) can also be represented by the Fourier series:

U (2)(z, t;µ) =

∞∑
n=−∞

U (2)
n (z, t;µ) e2πinz.(2.19)
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Since the right-hand side of (2.11) has a nonzero mean term in z, the nonzero mean

term U
(2)
0 (z, t;µ) satisfies the inhomogeneous equation

i
∂U

(2)
0

∂z
− µU

(2)
0 +

1

2

∂2U
(2)
0

∂t2
+ Φ2(t;µ)

(
2U

(2)
0 + Ū

(2)
0

)
= − iΓ(2)(µ)

∂Φ(t;µ)

∂µ

−
∞∑

n=−∞

(
1

2
d−n

∂2U
(1)
n

∂t2
+ 2Φ(t;µ)U (1)

n Ū (1)
n + Φ(t;µ)U (1)

n U
(1)
−n

)
.(2.20)

The mean term in the right-hand side of (2.20) leads to a secular growth of U
(2)
0 (z, t;µ)

in z unless the right-hand side of (2.11) is orthogonalized with respect to eigenfunc-
tions of the kernel of the linearized operator (the Fredholm alternative theorem). The
correction Γ(2)(µ) is found from the orthogonalization constraint as follows. Project-
ing (2.20) onto Φ(t;µ) and subtracting a complex conjugate equation, we obtain a

single equation under the condition that U
(2)
0 (z, t;µ) is bounded in t:

i
∂

∂z
〈Φ, U

(2)
0 + Ū

(2)
0 〉 = −iΓ(2)(µ)

∂

∂µ
〈Φ,Φ〉 − 1

2

∞∑
n=−∞

〈Φ′′, d−nU
(1)
n − d̄−nŪ

(1)
n 〉

−
∞∑

n=−∞
〈Φ2, U (1)

n U
(1)
−n − Ū (1)

n Ū
(1)
−n〉,(2.21)

where 〈f, g〉 is the standard inner product in L2(R):

〈f, g〉 =

∫ ∞

−∞
f̄(t)g(t)dt.

The right-hand side of (2.21) can be simplified with the use of the system (2.14)–(2.15)
as follows:

i
∂

∂z
|U (1)

n |2 +
1

2

∂

∂t

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)
= −1

2
Φ′′(t;µ)

(
d̄−nŪ

(1)
n − d−nU

(1)
n

)

−Φ2(t;µ)
(
Ū (1)
n Ū

(1)
−n − U (1)

n U
(1)
−n

)
.(2.22)

As a result, the projection formula (2.21) takes the form

i
∂

∂z

[
〈Φ, U

(2)
0 + Ū

(2)
0 〉 +

∞∑
n=−∞

〈U (1)
n , U (1)

n 〉
]

= −iΓ(2)(µ)
∂

∂µ
〈Φ,Φ〉 − 1

2

∞∑
n=−∞

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)∣∣∣∣
t=∞

t=−∞
.(2.23)

It follows from (B.1) and (B.5) of Appendix B for finite t that 〈U (1)
n , U

(1)
n 〉 becomes

z-independent in the limit z → ∞. It also follows from (2.16) that the limiting values

of U
(1)
n at |t| � 1 are nonzero and constant in the limit z → ∞ for large negative

n ≤ −Nµ, where Nµ = [ µ
2π ] is the integer ceiling of µ

2π > 0. Therefore, we conclude

that the correction term U
(2)
0 (z, t;µ) is free of secular terms in z in the limit z → ∞

only if Γ(2)(µ) is defined by the nonlinear Fermi golden rule,

Γ(2)(µ) = −
√

2µ

4i

−Nµ∑
n=−∞

lim
z→∞

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)∣∣∣∣
t=∞

t=−∞
,(2.24)
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where we use the formula

∂

∂µ
〈Φ,Φ〉 =

√
2

√
µ
.(2.25)

Using (2.16), we transform (2.24) to the explicit form

Γ(2)(µ) = −π2µ2

4

∞∑
n=Nµ

|dn|2(1 + k2
n)2

kn
sech2

(
πkn
2

)
.(2.26)

Assuming limn→∞ |dn|2 = 0, the infinite series in (2.26) converges when µ �= µn ≡
2πn, where n is any positive integer. Critical resonances occur at µ = µn, when
kn = 0. This case will be studied in more detail in section 3.

The correction term U
(2)
0 (z, t;µ) solves the linear inhomogeneous equation (2.20)

under the constraint (2.26). The right-hand side of (2.20) is bounded but nondecaying
in the limits |t| → ∞ and z → ∞ because of the asymptotic limit (2.16). The
nondecaying terms in (2.16) are not in resonance with the left-hand side of (2.20)
since k2

n +1 = 2πn
µ �= 0 for n �= 0. As a result, we conclude from (2.20) that a solution

U
(2)
0 (z, t;µ) exists and is bounded in the limit z → ∞ under the condition (2.26).

Similarly, one can show that a bounded solution exists for any U
(2)
n (z, t;µ) where n

is an integer; i.e., the bounded right-hand side term D1(z)U
(1)
tt in (2.11) is not in

resonance with the left-hand side of (2.11). This completes consideration of the order
O(m2) of the perturbation series expansions.

3. Decay rates of DM solitons. Formula (2.26) generalizes the Fermi golden
rule for radiative decay of bound states in a linear Schrödinger equation with time-
periodic potentials [17, 18]. The correction term Γ(2)(µ) is always negative, such that
the dynamical system (2.7) exhibits a simple behavior of a monotonic decay of µ(z) to
zero, starting with any initial value µ(0) = µ0 > 0. Therefore, the DM soliton decays
due to parametric resonances and radiative losses. The decay rate of µ(z) depends
on the nonlinear function Γ(2)(µ) in (2.26). Here we study solutions of the truncated
equations (2.7) and (2.26) at the order of O(m2):

dµ

dz
= −m2π4

∞∑
n=Nµ

|dn|2n2

kn
sech2

(
πkn
2

)
.(3.1)

We choose the dispersion coefficient D1(z) as a two-step symmetric function,

D1(z) =

{
1, mod(z, 1) ∈

(
0, 1

4

)
∪
(

3
4 , 1

)
,

−1, mod(z, 1) ∈
(

1
4 ,

3
4

)
.

(3.2)

For this dispersion map, the DM soliton is chirp-free at mod(z, 1) = 0 and mod(z, 1) =
1
2 (see [21], for instance). The Fourier coefficients dn for this dispersion map are

dn =
2(−1)n+1

πn
sin

(πn
2

)
.(3.3)

As a result, the dynamical system (3.1) takes an explicit form,

dµ

dz
= −4π2m2

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
, kn =

√
2πn

µ
− 1.(3.4)
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This equation is the main result of this paper. It describes the radiation damping of
DM solitons in the normalized dispersion-periodic NLS equation (2.2) with piecewise-
constant dispersion maps. It is asymptotically accurate when m � 1 and µ is not
close to critical values µn = 2πn, where n is a positive odd integer. If µ ≈ µn, critical
resonances occur and radiation tails become large, such that the perturbation series
breaks down in a strict mathematical sense. The decay-rate function Γ(2)(µ) in the
right-hand side of (3.4) for m = 1 is plotted in Figure 1.

A similar equation for the radiative decay of DM solitons in the presence of weak
sinusoidal dispersion variation has been derived in [13]. In that paper, only one term
appears in the right-hand side of (3.1) since the Fourier series for Dε(z) in (1.4)
contains only a single term in that case.

Below, we analyze the dynamical equation (3.4) under three different limits: (i)
µ � 1; (ii) µ = O(1); (iii) µ � 1.

1. Limit of small values of µ. When µ � 1, all terms in the series in (3.4)
are present since Nµ = 1. But only the first term with n = 1 dominates, since the
higher terms are exponentially smaller in µ compared to the (exponentially small)
first term. Therefore, the dynamical equation (3.4) can be truncated at the first term
and simplified as

dµ

dz
= −16π2m2e−πk1

k1
, k1 =

√
2π

µ
− 1.(3.5)

Comparison between numerical solutions of the simplified equation (3.5) and the orig-
inal equation (3.4) indicates that the simplified equation (3.5) gives a very good ap-
proximation to the original equation (3.4) not only for µ � 1, but also for µ < 2π
(see Figures 2 and 3).

In the limit µ → 0, methods of exponential asymptotics can be developed after
further simplification of the dynamical equation (3.5):

dµ

dz
= −αm2µ1/2 exp

(
− β

µ1/2

)
,(3.6)

where α = 4(2π)3/2 and β = π(2π)1/2. In this limit, the radiation damping of DM
solitons and the continuous-tail radiation emitted by the DM soliton are exponentially
weak. This agrees with the asymptotic beyond-all-orders calculations by Yang and
Kath [10]. A similar situation occurs in the dynamics of embedded solitons in the
perturbed integrable fifth-order KdV equation in the small velocity limit [22].

Results of [10] are valid when µ � 1 and m is arbitrary, while our results are
valid when m � 1 and µ arbitrary. In the regime of common validity, i.e., m � 1
and µ � 1, the two results match each other, as shown next. When µ � 1, the
radiation field is dominated by the n = −1 term in the Fourier-series solution (2.13)
for U (1)(z, t;µ). The amplitude of this radiation field is thus given asymptotically
from (2.16) as

urad = 2mπ
1
2 exp

(
−π3/2

√
2µ

)
.(3.7)

Due to the rescaling of variables (2.1) and different notations, results of [10] need to be
reformulated. In the present notations, the amplitude of the radiation field obtained
in [10] is in the form

urad =
1

2
Cπ

1
2 exp

(
−π3/2

√
2µ

)
,(3.8)
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Fig. 1. Decay rate Γ(2)(µ) of DM solitons versus the parameter µ as in (3.4) for m = 1.

where C is a dispersion map-dependent constant given in Figure 1 of [10]. Our
parameter m is equal to 1

2 (σ2 − σ1) of [10]. When m � 1, inspection of Figure 1 in
[10] shows that C ≈ 2(σ2 − σ1) = 4m. Thus, in the limits m,µ � 1, the radiation
field (3.7) from our analysis agrees perfectly with (3.8) from [10]. We note that Yang
and Kath [10] also found windows of low radiation field at large values of m. Since
our results are valid only in the limit m � 1 and up to the order of O(m2), the low-
radiation windows cannot be recovered in our analysis unless the perturbation series
(2.6) and (2.7) are extended to at least O(m4).

The dynamical equation (3.6) can be integrated with the help of the Laplace
method as follows:

1

2
αm2(z + z0) = exp

(
β

µ1/2

)[
µ

β
+ O(µ3/2)

]
,(3.9)

where z0 is a constant of integration. The leading-order asymptotic solution for µ(z)
in the limit µ → 0 is derived from (3.9) in the form

µ(z) =

⎡
⎣ β

log
[
αm2

2β (z + z0) log2(z + z0)
]

+ O
(

1
log(z+z0)

)
⎤
⎦

2

.(3.10)

As z → ∞, the parameter µ(z) decays logarithmically as

µ(z) ∼ β2

log2 z

[
1 − 4

log log z

log z

]
.(3.11)

This logarithmic decay of bound states has been reported previously for internal modes
of envelope solitons in [23]. Logarithmic decay is associated with an exponentially
small Fermi golden rule for exponentially small radiative waves.

2. Solutions near critical values µn. If µ(0) > 2π, the decay of DM solitons always
leads to the point where the parameter µ has to pass through a critical value µn = 2πn,
where n is a positive odd integer. When this happens, the radiation field becomes
large, and the perturbation-series solution formally breaks down. Consequently, the
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solution of the dynamical equation (3.4) may no longer give a good approximation to
the true solution. However, numerical results indicate that the solution of (3.4) still
agrees qualitatively with the solution of the full equation (2.2) (see Figure 4). Here
we derive the solution of the dynamical equation (3.4) when it passes through a single
critical value µ = µN at z = zN .

Since Nµ is an integer ceiling of µ
2π , and Nµ is odd, the one-sided limit z → z−N is

nonsingular, and the parameter µ(z) approaches µN with a linear slope:

µ(z) = µN − µ′
N (z − zN ) + O(z − zN )2, z < zN ,(3.12)

where

µ′
N = 4m2π2

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
,(3.13)

and kn are all computed at µ = µN . Once the parameter µ(z) passes below µN , a
singular term with n = N appears in the dynamical equation (3.4) because kN = 0
at µ = µN . The leading-order asymptotic approximation for the solution µ(z) for
z > zN takes the form

µ(z) = µN − [α(z − zN )]
2/3

+ O(z − zN ), z > zN ,(3.14)

where α = 6m2π2√µN . The slope of µ(z) is infinite in the limit z → z+
N , but the

solution µ(z) is still continuous at z = zN . The asymptotic solution (3.14) describes
a sharp drop in the amplitude of the DM soliton after it passes through a critical
resonance value µN .

3. Limit of large values of µ. When µ � 1, the dynamical equation (3.4) can also
be simplified. Using the formula

k2
n+2 − k2

n =
4π

µ
(3.15)

and the Riemann sum approximation for the integral with areas of rectangles, we
approximate the sum as

1

µ

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
=

1

2π

∞∑
n=Nµ
n odd

sech2

(
πkn
2

)
(kn+2 + kn)

2kn
(kn+2 − kn)

≈ 1

2π

∫ ∞

k0(µ)

sech2

(
πk

2

)
dk,(3.16)

where k0(µ) = kNµ such that 0 < k0(µ) < 1. In this approximation, the dynamical
system (3.4) simplifies to the form

dµ

dz
= −4m2µ [1 − tanh(k0(µ))] .(3.17)

Using the comparison principle for (3.17), we conclude that DM solitons decay with
a linear decay rate when µ(z) � 1:

µ(0) exp
(
−4m2z

)
≤ µ(z) ≤ µ(0) exp

(
−4m2α0z

)
,(3.18)
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where α0 = 1 − tanh1 > 0.

We note that when µ(0) � 1, the monotonic decay of µ(z) passes through many
critical values, where radiation amplitudes are large. As a result, the asymptotic
solution (3.18) may not give a good quantitative approximation to the true solution.
Nevertheless, the solution (3.18) still describes qualitatively the decay of DM solitons
for µ(0) � 1 (see Figure 5).

4. Numerical simulations of DM solitons. Here we directly simulate the
normalized dispersion-periodic NLS equation (2.2) and compare numerical solutions
with the above analytical solutions. Our numerical method uses the fast Fourier
transform (FFT) to compute the derivatives in t, and the fourth-order Runge–Kutta
scheme to advance in z. At the values of z where the dispersion has a discontinuity
(i.e., mod(z, 1) = 1

4 and mod(z, 1) = 3
4 ), the stepsize ∆z is reduced so that the

overall fourth-order accuracy in z is assured. To eliminate radiation reflection at the
boundaries of the t-interval, damping boundary conditions are used. Our results are
checked with longer t-intervals, more grid points in t, and smaller stepsize ∆z, and
the results are found to remain the same.

Our numerical simulation starts with the initial condition of a standard (unchirped)
NLS soliton:

u(0, t) =
√

2µ0 sech
√

2µ0 t.(4.1)

It is known that DM solitons are unchirped in the middle point of each constant-
dispersion segment, i.e., at mod(z,1) = 0 and mod(z,1) = 1/2 in the present case.
Thus, when the unchirped NLS soliton (4.1) is launched at z = 0, the radiation
emission is minimal compared to that of chirped solitons.

Below, we describe numerical computations with m = 0.1 and four different values
of µ(0).

1. Figure 2: µ(0) = 1. Figure 2(a) shows the soliton amplitude versus distance
z. We see that this soliton’s amplitude is oscillating (breathing) with unit period,
which is the period of the dispersion map D1(z). This behavior is a signature of
DM solitons. The evolution of the average soliton amplitude in z is plotted in Figure
2(b). This average amplitude is numerically calculated for each unit distance z as
the average between the maximum and minimum amplitudes. It is clear from Figure
2(b) that the DM soliton slowly decays due to the parametric resonance between the
soliton and the dispersion map, in accordance with the analytical prediction above.
Also in Figure 2(b), the analytical values of the average soliton amplitude

√
2µ ob-

tained from the dynamical equation (3.4) and its simplified version (3.5) are plotted
as circles “o” and crosses “x,” respectively. We see that both analytical equations
(3.4) and (3.5) agree with numerical values and with each other extremely well. This
comparison confirms that the dynamical equation (3.4) for radiation damping of DM
solitons is asymptotically accurate in the case m � 1 and µ(0) < µ1 = 2π, and
that the simplified equation (3.5) is a very good approximation to (3.4) not only
for µ � 1, but also for µ = O(1). The soliton profile at z = 2000 is shown in
Figure 2(c) in a logarithmic scale. We clearly see the central DM-pulse is flanked
by continuous-wave radiation. The radiation amplitude is nearly constant. This is
because the radiation is excited mainly by the lowest-order resonance with n = 1
in (3.4), and the radiation field is dominated by the lowest-order radiative waves
with n = 1 in (2.16). At z = 2000, the parameter µ can be inferred from Fig-
ure 2(b) as roughly 0.6731, and the radiation field should be dominated by waves
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Fig. 2. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 1. (a) Soliton amplitude
versus distance z. (b) Average soliton amplitude versus z: numerical results (solid curve); analytical
average soliton amplitude

√
2µ from (3.4) (circles); analytical average soliton amplitude

√
2µ from

(3.5) (crosses). (c) Solution profile at z = 2000. (d) Fourier spectrum of the solution at z = 2000.

with frequencies ±
√

2µ k1 ≈ ±3.35, according to (2.16). This is confirmed in Fig-
ure 2(d), where the solution spectrum at z = 2000 is shown. This spectrum has
two spikes at frequencies ±3.33, which are due to the radiation field. The loca-
tions of these frequency spikes are in excellent agreement with the theoretical values
±3.35.

2. Figure 3: µ(0) = 6. In this case, the initial value of µ is close to but still
below the lowest critical resonance value µ1 = 2π. Therefore, we expect that the
radiation field would be larger, and the theoretical approximation (3.4) for the DM
soliton less accurate. This is indeed the case. In Figure 3(a), the soliton amplitude
versus distance z is plotted. We see that the amplitude oscillates irregularly, and the
period of oscillations is not equal to the unit dispersion map period any-more. This
is an indication that the central pulse has deviated from the DM soliton. However,
our analytical solution for the average soliton amplitude

√
2µ, which is calculated

from the dynamical equation (3.4), still gives a very reasonable approximation to the
true solution (see the dashed line in Figure 3(a)). We have also compared solutions
from the dynamical equation (3.4) and its simplified form (3.5) for the present set
of parameters, and found that the two solutions differ by only less than 6%. Thus,
over a wide range of µ values below the critical resonance µ1 = 2π, the simplified
equation (3.5) gives a very good approximation to the original dynamical equation
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Fig. 3. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 6. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b) Solution profile at z = 60. (c) Spectrum of the solution at z = 60.

(3.4). In Figures 3(b) and (c), the numerically obtained field profile and its Fourier
spectrum at distance z = 60 are plotted. Due to the quasi-critical resonance, the
radiation field in Figure 3(b) is much larger than that in Figure 2(c). In addition, the
Fourier spectrum in Figure 3(c) indicates that the solution can no longer be called a
DM soliton. Nevertheless, the main resonant spikes on the two sides of Figure 3(c)
are still well predicted by the resonance conditions at k = ±

√
2µ k1.

3. Figure 4: µ(0) = 12. In this case, the initial value of µ is above the lowest
critical resonance value µ1 = 2π, and the monotonic decay of the DM soliton passes
through this critical resonance. Here we focus on how this transition occurs. In Figure
4(a), the soliton amplitude versus distance z is plotted as the solid curve. We see that
radiation damping is initially slow, as the average soliton amplitude decreases toward
the critical value at

√
2µ1 ≈ 3.54. In this process, the DM soliton oscillates with the

unit period of the dispersion map. A solution profile plotted in Figure 4(b) at z = 50
shows a weak radiation field, which is the reason for the slow decay of the DM soliton.
The corresponding Fourier spectrum in Figure 4(d) shows that the radiation field
consists of a discrete set of frequencies which are precisely the resonant frequencies.
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When the average soliton amplitude passes through
√

2µ1, a critical resonance
occurs. Consequently, the soliton decays much faster (see Figure 4(a)). Strong contin-
uous-wave radiation is emitted in this process, and the DM soliton is strongly modified.
After the average soliton amplitude passes below

√
2µ1, the pulse oscillates irregu-

larly, and its oscillation period is no longer equal to the unit period of the dispersion
map. A solution profile shown in Figure 4(c) at z = 100 confirms that the radiation
field becomes much stronger past the critical-resonance stage. The Fourier spectrum
in Figure 4(e) shows that the radiation field is no longer dominated by a discrete
set of resonant frequencies. In addition, the Fourier spectrum appears to be quite
noisy.

When a critical resonance is reached, the perturbation-series solution (2.6) and
(2.7) formally breaks down, and the analytical results are not expected to provide
quantitatively accurate approximations to the numerical solution. This is indeed the
case. In Figure 4(a), the analytical average soliton amplitude

√
2µ obtained from

(3.4) is also plotted (dashed line). We see that prior to the critical resonance, the
analytical curve closely follows the numerical average soliton amplitude (not shown).
However, when the numerical solution gets close to the critical resonance, it starts
to deviate from the analytical curve considerably. In fact, the numerical solution
passes through the critical resonance much earlier than what the theory predicts
(see Figure 4(a)). Nevertheless, the analytical solution still agrees qualitatively with
the numerical solution. For instance, the sharp (infinite-slope) drop of the soliton
amplitude as predicted in (3.14) does occur past the critical value of the soliton
amplitude at

√
2µ1 ≈ 3.54 (see Figure 4(a)).

4. Figure 5: µ(0) = 100. When the initial value of µ is large, the asymptotic
analysis predicts that the soliton decays exponentially according to the bounds in
(3.18). However, the monotonic soliton-decay passes through many critical reso-
nances in this case. Thus, the accuracy of the analytical prediction needs to be
examined. To address this issue, the results from numerical simulations at m = 0.1
and µ(0) = 100 are shown in Figures 5(a)–(e). When µ � 1, the DM soliton
spends most of the time inside individual constant-dispersion segments, where the
DM soliton is governed by the standard NLS equation. This is reflected by the
fast amplitude oscillations inside each constant-dispersion segment in Figure 5(a).
Due to the radiative damping, the DM soliton passes through critical resonances at
n = 15, 13, 11, 9, 7, . . . , 1, when the average soliton amplitude matches the critical val-
ues at

√
4πn = 13.73, 12.78, 11.76, 10.63, 9.38, . . . , 3.54, respectively. It follows from

Figure 5(a) that, even though the DM soliton passes through a number of critical
resonances here, it still holds up and maintains its DM soliton character and the unit
periodicity up to the first four critical resonances. The solution profile and the Fourier
spectrum of the DM soliton at z = 15 are shown in Figures 5(b) and (d). Further
evolution of the DM soliton shows that the DM soliton character is lost after the fifth
critical resonance at the average amplitude about 9.38. The solution profile and its
Fourier spectrum at z = 24 are shown in Figures 5(c) and (e). A noisy spectrum past
the critical resonances similar to that of Figure 4(e) is observed.

It follows from Figure 5(a) that higher-order critical resonances have a much
weaker effect on the dynamics of the DM soliton than do lower-order resonances. As
a result, the analytical dashed curve in Figure 5(a) for the average soliton amplitude
agrees well with the numerical results until the fifth critical resonance is reached. We
have also checked that the analytical curve in Figure 5(a) is indeed bounded between
the two exponentially decaying functions in (3.18).
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Fig. 4. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 12. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b), (c) Solution profiles at z = 50 and z = 100. (d), (e) Spectra of the solutions
at z = 50 and z = 100.
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Fig. 5. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 100. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b), (c) Solution profiles at z = 15 and z = 24. (d), (e) Spectra of the solutions
at z = 15 and z = 24.
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Fig. 6. Numerical evolutions of the DM soliton amplitudes with m = 0.2 and (a) µ(0) = 1; (b)
µ(0) = 6; (c) µ(0) = 12. Numerical results are shown by solid curves. Analytical average soliton
amplitudes

√
2µ from (3.4) are shown by dashed curves.

In the end of this section, we discuss how the solution changes when the pertur-
bation strength m gets larger. For this purpose, we choose m = 0.2, compared to
m = 0.1 in Figures 2–5. The soliton amplitudes versus distance z for µ(0) = 1, 6, 12
are shown in Figures 6(a), (b), and (c), respectively. The average soliton amplitudes
predicted from (3.4) are also plotted for comparison. Figure 6(a) shows that in the
case of small and moderate values of µ(0), the soliton still decays according to the
analytical equation (3.4). Figures 6(b) and (c) indicate that when µ(0) is close to or
above the lowest critical resonance value µ1 = 2π, the pulse deviates further from the
DM soliton than in the case of m = 0.1, and the pulse amplitude oscillates with a
period further away from the unit period of the dispersion map. When m increases,
the distance scale for soliton evolution shrinks by a factor of m2, as formula (3.4)
predicts. For instance, when m = 0.1 and µ(0) = 12, the lowest critical resonance is
reached in the numerical solution at z ≈ 76 (see Figure 4(a)), while when m = 0.2,
the critical resonance in the numerical solution is reached at z ≈ 18, i.e., four times
faster.

5. Summary and discussion. In this paper, we have studied the nonlinear
parametric resonance of DM solitons for average-anomalous dispersion (D0 > 0) in
the limit m → 0 by both analytical and numerical methods. We have found that
due to a resonance between the DM soliton and the dispersion map, the soliton
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keeps shedding continuous-wave radiation and consequently decays. The radiation
amplitude is on the order of m, while the decay rate of DM solitons is on the order
of m2. We have calculated the analytical approximations for the decay rate of DM
solitons in the limits of small, intermediate, and large initial soliton amplitudes. We
have shown that when the soliton passes through a critical resonance, it decays much
faster. All these analytical results are found to be in excellent agreement with direct
numerical simulations.

Resonances in the dispersion-periodic NLS equation (1.1) resemble a nonlinear
generalization of parametric resonances in a linear Schrödinger equation studied re-
cently in [17, 18]. The perturbation term in [17, 18] satisfies the assumption of being
periodic in time and decaying fast in space. The nonlinear problem (1.1) does not sat-
isfy this localization assumption. In addition, the periodic variations of Dε(z) are not
generally small perturbations of the mean term D0 in real communication systems.
Thus, rigorous analysis of the parametric resonance of DM solitons in dispersion-
periodic NLS equation (1.1) with nonsmall dispersion variations needs further inves-
tigation.

Appendix A: Solutions of the first-order problem (2.14)–(2.15). We
use Kaup’s method [19] to solve the inhomogeneous problem (2.14)–(2.15) with the
spectral decomposition for a linearized NLS operator. Since the potential of the
problem can be rescaled as Φ(t;µ) =

√
2µ Φ(T ), where Φ(T ) = sechT and T =

√
2µt,

we transform the variables as follows:

U (1)
n (z, t;µ) = 2dn

√
2µ Vn(Z, T ), Z = µz, T =

√
2µt.(A.1)

The system (2.14)–(2.15) in new variables transforms to the following:

i
∂Vn

∂Z
− (1 + λn)Vn +

∂2Vn

∂T 2
+ 2 sech2T

(
2Vn + V̄−n

)
= −1

2
Φ′′(T ),(A.2)

−i
∂V̄−n

∂Z
− (1 − λn) V̄−n +

∂2V̄−n

∂T 2
+ 2 sech2T

(
2V̄−n + Vn

)
= −1

2
Φ′′(T ),(A.3)

where

λn =
2πn

µ
.

The system is written in matrix notations as

L
[

Vn

V̄−n

]
=

(
i
∂

∂Z
− λn

)[
Vn

V̄−n

]
+

1

2

[
1
−1

]
Φ′′(T ),(A.4)

where the linearized NLS operator is

L =

[
− ∂2

∂T 2 + 1 − 4 sech2T −2 sech2T

2 sech2T ∂2

∂T 2 − 1 + 4 sech2T

]
.(A.5)

The linearized NLS operator L possesses a complete set of eigenfunctions [19] that
consists of eigenfunctions associated with two branches of the continuous spectrum
and eigenfunctions associated with the zero eigenvalue of the discrete spectrum. The
continuous spectrum eigenfunctions are

ψ1(T ; k) = eikT
[(

1 − 2ike−T

(k + i)2 coshT

)(
0
1

)
+

1

(k + i)2 cosh2 T

(
1
1

)]
(A.6)
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and

ψ2(T ; k) = e−ikT

[(
1 +

2ike−T

(k − i)2 coshT

)(
1
0

)
+

1

(k − i)2 cosh2 T

(
1
1

)]
,(A.7)

such that Lψ1(T ; k) = −(1 + k2)ψ1(T ; k) and Lψ2(T ; k) = (1 + k2)ψ2(T ; k). The
zero eigenvalue has algebraic multiplicity four and geometric multiplicity two. The
eigenfunctions of the zero eigenvalue are

φ1(T ) =

(
1
−1

)
sechT, φ2(T ) =

(
1
1

)
sechT tanhT,(A.8)

such that Lφ1,2(T ) = 0. The generalized eigenfunctions of the zero eigenvalue are

φd
1(T ) =

(
1
1

)
(T tanhT − 1) sechT, φd

2(T ) =

(
1
−1

)
T sechT,(A.9)

such that Lφd
1,2(T ) = 2φ1,2(T ). Eigenfunctions of the linearized NLS operator L

satisfy the orthogonality conditions

〈ψ1(k
′)|σ3|ψ1(k)〉 = −2πδ(k′ − k), 〈ψ2(k

′)|σ3|ψ2(k)〉 = 2πδ(k′ − k),(A.10)

〈φ1|σ3|φd
1〉 = −2, 〈φ2|σ3|φd

2〉 = 2,(A.11)

with respect to the inner product

〈f |σ3|g〉 =

∫ ∞

−∞

[
f̄1(T )g1(T ) − f̄2(T )g2(T )

]
dT.(A.12)

All other inner products computed with eigenfunctions (A.6)–(A.9) are identically
zero. The orthogonality conditions (A.10)–(A.11) are modified compared with the
original definition in [19]. Orthogonality conditions similar to (A.10)–(A.11) were
used by Kaup and Lakoba [20].

The right-hand side term of (A.4) can be decomposed through a complete set of
eigenfunctions (A.6)–(A.9) as follows:

F =
1

2

[
1
−1

]
Φ′′(T ) =

∫ ∞

−∞
[α(k)ψ1(T ; k) + β(k)ψ2(T ; k)] dk

+aφ1(T ) + bφ2(T ) + cφd
1(T ) + dφd

2(T ),(A.13)

where the expansion coefficients can be explicitly computed as

α(k) = − 1

2π
〈ψ1(k)|σ3|F〉 =

(k + i)2

8
sech

πk

2
,(A.14)

β(k) =
1

2π
〈ψ2(k)|σ3|F〉 = − (k − i)2

8
sech

πk

2
,(A.15)

a = −1

2
〈φd

1|σ3|F〉 = −1

2
, b =

1

2
〈φd

2|σ3|F〉 = 0,(A.16)
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c = −1

2
〈φ1|σ3|F〉 = 0, d =

1

2
〈φ2|σ3|F〉 = 0.(A.17)

Here we have used the exact value,

1

π

∫ ∞

−∞

cos kT

coshT
dT = sech

(
πk

2

)
.

The solution of (A.2)–(A.3) can be found by using the spectral decomposition:[
Vn

V̄−n

]
(Z, T ) =

∫ ∞

−∞
[αn(k, Z)ψ1(T ; k) + βn(k, Z)ψ2(T ; k)] dk

+ an(Z)φ1(T ) + bn(Z)φ2(T ) + cn(Z)φd
1(T ) + dn(Z)φd

2(T ).(A.18)

Coefficients of the expansion satisfy a simple Z-evolution problem with zero initial
conditions:

i
∂αn

∂Z
= (λn − 1 − k2)αn − α(k), i

∂βn

∂Z
= (λn + 1 + k2)βn − β(k),(A.19)

i
∂an
∂Z

= λnan + 2cn − a, i
∂bn
∂Z

= λnbn + 2dn − b,(A.20)

and

i
∂cn
∂Z

= λncn − c, i
∂dn
∂Z

= λndn − d.(A.21)

The unique solution of the Z-evolution problem (A.19)–(A.21) is

αn(k, Z) =
α(k)

λn − 1 − k2

[
1 − e−i(λn−1−k2)Z

]
,(A.22)

βn(k, Z) =
β(k)

λn + 1 + k2

[
1 − e−i(λn+1+k2)Z

]
,(A.23)

an(Z) = − 1

2λn

[
1 − e−iλnZ

]
, bn(Z) = 0,(A.24)

and

cn(Z) = 0, dn(Z) = 0.(A.25)

Equations (A.24)–(A.25) are obtained with the use of (A.16)–(A.17).

Appendix B: Asymptotic limits for the first-order solution. We analyze
the first-order solution (Vn, V̄−n)(Z, T ) defined in the spectral representation form
(A.18) of Appendix A with explicit spectral coefficients in (A.14)–(A.15) and (A.22)–
(A.25). The asymptotic limit Z → ∞ depends on a range of values of T .

(i) |T | < ∞ and Z → ∞. The first-order solution is a sum of two terms,
Vn(Z, T ) = Wn(T )+Qn(Z, T ), where Wn(T ) is generated by the inhomogeneous part
of the system (A.2)–(A.3) and Qn(Z, T ) is generated by the homogeneous part of the
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system (A.2)–(A.3) in the initial-value problem. Using the spectral decomposition
(A.18), we express Wn(T ) and Qn(Z, T ) explicitly as

[
Wn

W̄−n

]
(T ) =

∫ ∞

−∞

[
α(k)

λn − 1 − k2
ψ1(T ; k) +

β(k)

λn + 1 + k2
ψ2(T ; k)

]
dk − 1

2λn
φ1(T )

(B.1)

and

[
Qn

Q̄−n

]
(Z, T ) = −

∫ ∞

−∞

[
α(k)e−i(λn−1−k2)Z

λn − 1 − k2
ψ1(T ; k)

+
β(k)e−i(λn+1+k2)Z

λn + 1 + k2
ψ2(T ; k)

]
dk +

e−iλnZ

2λn
φ1(T ).(B.2)

We use formulas of generalized functions,

lim
Z→∞

e±iKZ

K
= ±πiδ(K)(B.3)

and

δ(k2 + k2
n) = 0, δ(k2 − k2

n) =
1

2kn
[δ(k − kn) + δ(k + kn)] ,(B.4)

and notice that the limit Z → ∞ in (B.2) is nonzero only if the resonance equation
1 + k2 ± λn = 0 has a solution for real k. We consider n > 0 such that λn > 0 and
denote kn =

√
λn − 1 ≥ 0 for λn ≥ 1. The resonance condition λn ≥ 1 is satisfied for

n ≥ Nµ, where Nµ = [ µ
2π ] is the integer ceiling of µ

2π > 0. With the use of (B.3)–(B.4),
we compute the limit Z → ∞ for Qn(Z, T ) at n ≥ Nµ and finite T :

lim
Z→∞

[
Qn

Q̄−n

]
(Z, T ) =

πi

2kn
[α(kn)ψ1(T ; kn) + α(−kn)ψ1(T ;−kn)] .(B.5)

The first-order solution Vn(Z, T ) = Wn(T ) + Qn(Z, T ) is bounded in T and Z in the
limit Z → ∞.

(ii) |T | → ∞ and Z → ∞. It follows from (B.3)–(B.4) that

lim
T→±∞

eikT

(k − kn)(k + kn)
= ± πi

2kn

[
δ(k − kn)eiknT − δ(k + kn)e−iknT

]
.(B.6)

Using this formula for n ≥ Nµ, we find from (B.1) and (B.5) that

lim
T→±∞

[
Wn

W̄−n

]
(T ) = ∓ πi

16kn
sech

πkn
2

[
eiknT (kn ± i)2 − e−iknT (kn ∓ i)2

]( 0
1

)(B.7)

and

lim
T→±∞,Z→∞

[
Qn

Q̄−n

]
(Z, T ) =

πi

16kn
sech

πkn
2

[
eiknT (kn ± i)2 + e−iknT (kn ∓ i)2

]( 0
1

)
.

(B.8)
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As a result, the boundary values of the first-order solution Vn(Z, T ) satisfy the Som-
merfeld radiation boundary conditions:

lim
|T |→∞,Z→∞

V−n(Z, T ) = −πi(kn + i)2

8kn
sech

πkn
2

eikn|T |, n ≥ Nµ.(B.9)

(iii) |T | → ∞ and Z < ∞. Using formula (B.6) in (B.1)–(B.2), we find that both
terms cancel out since

lim
k→±kn

(
1 − e−i(λn−1−k2)Z

)
= 0.

As a result, we have zero boundary values for Vn(Z, T ) in the limit |T | → ∞ for finite
Z:

lim
|T |→∞

Vn(Z, T ) = 0.(B.10)

The first-order solution represents radiative waves diverging from the NLS soliton.
In the limit Z → ∞, the radiative waves approach the Z-independent boundary
values given by (B.9). In the intermediate region, where |T | → ∞, Z → ∞, and
limZ→∞ T/Z = C, where 0 < C < ∞, the radiative waves move with the group
velocity 2kn, according to the intermediate asymptotic expression

lim
|T |→∞,Z→∞

V−n(Z, T ) = −πi(kn + i)2

8kn
sech

πkn
2

eikn|T | H

(
2kn − |T |

Z

)
, n ≥ Nµ,

(B.11)

where H(z) = 1 for z > 0 and H(z) = 0 for z < 0. The intermediate asymptotic
expression includes (B.9) and (B.10) as particular cases.
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